Influence of Steam Curing on High-Cyclic Behaviour of Prestressed Concrete Bridge Elements

Eugedijus Juozas Dulinskas, Viktor Gribniak, Gintaris Kaklauskas


The paper discusses the influence of curing conditions (steam and normal curing) on high-cyclic creep and fatigue strength of reinforced concrete bridge elements. The present analysis is based on experimental investigation performed by the first author: 46 plain concrete prisms and 13 prestressed concrete beams were subjected to the high-cycle loading (up to four million cycles). A comparative regression analysis of the fatigue strength of compressive concrete, in terms of a number of load cycles for given max stress level (S-N relationship) has been performed. The analysis has shown that curing conditions had no significant effect on the S-N relationship. On the contrary, curing conditions have significantly influenced the cyclic creep of compressive concrete. On average, the steam cured members had from 30 up to 80% larger deformations than the specimens cured under normal conditions. The difference was larger for higher numbers of loading cycles.


curing conditions; fatigue testing; cyclic creep; prestressed concrete bridges

Full Text:



Aas-Jakobsen, K. 1970. Fatigue of concrete beams and columns. Bulletin No. 70-1. Trondheim: The Norwegian Institute of Technology. 148 p.

ACI Committee 224. 2001. Control of cracking in concrete structures, ACI 224R-01. Farmington Hills, Mich.: American Concrete Institute. 46 p.

Carpinteri, A.; Spagnoli, A.; Vantadori, S. 2004. A fracture mechanics model for a composite beam with multiple reinforcement under cyclic bending, International Journal of Solids and Structures 4(20): 5499–5515.

Dulinskas, E.; Gribniak, V.; Kaklauskas, G. 2007. Influence of curing conditions on the fatigue strength and cyclic creep of compressive concrete, in Proc of the 9th International Conference “Modern Building Materials, Structures and Techniques”: selected papers, vol. 2. Ed. by Skibniewski, M. J.; Vainiūnas, P.; Zavadskas, E. K. May 16–19, 2007, Vilnius, Lithuania. Vilnius: Technika, 517–522.

Gribniak, V.; Kaklauskas, G.; Bačinskas, D. 2007. State-of-art review on shrinkage effect on cracking and deformations of concrete bridge elements, The Baltic Journal of Road and Bridge Engineering 2(4): 183–193.

Gribniak, V.; Kaklauskas, G.; Bačinskas, D. 2008. Shrinkage in reinforced concrete structures: a computational aspect, Journal of Civil Engineering and Management 14(1): 49–60.

Holmen, J. O. 1979. Fatigue of concrete by constant and variable amplitude loading. Technical Paper, Bulletin No. 79-1. Trondheim: The Norwegian Institute of Technology. 218 p.

Hordijk, D. A.; Reinhardt, H. W. 1993. Numerical and experimental investigation into the fatigue behavior of plain concrete, Experimental Mechanics 33(4): 278–285.

Hsu, T. T. C. 1981. Fatigue of plain concrete, ACI Journal, Proceedings 78(4): 292–304.

Juozapaitis, A.; Vainiūnas, P.; Kaklauskas, G. 2006. A new steel structural system of a suspension pedestrian bridge, Journal of Constructional Steel Research 62(12): 1257-1263.

Kaklauskas, G. 2004. Flexural layered deformational model of reinforced concrete members, Magazine of Concrete Research 56(10): 575–584.

Kaklauskas, G.; Gribniak, V.; Bačinskas, D. 2008. Discussion of “Tension stiffening in lightly reinforced concrete slabs” by R. I. Gilbert, ASCE Journal of Structural Engineering 134(7): 1261–1262.

Khalfallah, S. 2008. Tension stiffening bond modelling of cracked flexural reinforced concrete beams, Journal of Civil Engineering and Management 14(2): 131–137.

Kim, S.-M.; Mc Cullough, B. F. 2002. Reconsideration of thickness tolerance for concrete pavements. Research Report 4382-1. Austin: University of Texas. 98 p.

Nowak, A. S.; Kim, S.; Stankiewicz, P. R. 2000. Analysis and diagnostic testing of a bridge, Computers and Structures 77(1): 91–100.

Ople, F. S.; Hulsbos, C. L. 1966. Probable fatigue life of plain concrete with stress gradient, ACI Journal, Proceedings 63(1): 59–82.

Rehm, G.; Eligehausen, R. 1979. Bond of ribbed bars under high cycle repeated loads, ACI Journal, Proceedings 76(2): 297–313.

Stemland, H.; Petkovic, G.; Rosseland, S.; Lenschow, R. 1990. Fatigue of high strength concrete, Nordic Concrete Research 90: 172–196.

Tepfers, R.; Kutti, T. 1979. Fatigue strength of plain and ordinary and lightweight concrete, ACI Journal, Proceedings 76(5): 635–652.

Thun, H. 2006. Assessment of fatigue resistance and strength in existing concrete structures. PhD thesis 2006:65. Lulea: University of Technology. 187 p.

Дулинскас, Е. 1973. Исследование усталости и жесткости преднапряженных балок с учетом напряженного состояния в процессе теплообработки [Dulinskas, E. Experimental investigation of fatigue and stiffness of prestressed RC flexural members subjected to thermal curing]. Дис. ... канд. техн. н. Вильнюс. 258 с.

DOI: 10.3846/1822-427X.2008.3.115-120


  • There are currently no refbacks.

Copyright (c) 2008 Vilnius Gediminas Technical University (VGTU) Press Technika