Condition Assessment of Road Equipment – State-of-the-Art

Authors

  • Ulf Isacsson Dept of Civil and Architectural Engineering, Royal Institute of Technology (KTH), Brinellvägen 34, SE-100 44 Stockholm, Sweden

DOI:

https://doi.org/10.3846/1822-427X.2008.3.84-92

Keywords:

road equipment, road lighting, barrier, road sign, road marking, traffic signal, condition assessment, retroreflectivity, visibility

Abstract

Road equipment is used for increasing safety and comfort in traffic. There are 5 main groups of equipment: road lighting, fences and barriers, vertical signs, horizontal signs and traffic signals. Common for all road equipment is that, once they have been installed on the road, the performance must be maintained. Condition assessment is an important tool for determining the maintained degree of performance. Generally, there is a large number of equipment along a road. This means that a measurement method must be fast and practical to use. Even so, not all equipment can be measured, but a sample must be chosen from the population. In other words, condition assessment needs both sampling and an appropriate measurement method. In practice, sampling in-situ can be difficult to perform. Consequently, it might be necessary to deviate from complete randomness when sampling. However, it is important that sampling is carried out in such a way that no systematic errors are introduced. A physical measurement method aimed for condition assessment should preferably be mobile. Unfortunately, only a few mobile methods are described in the literature and, among these methods, solely one physical method has been used for assessment (road marking retroreflectivity characterization). Results from such studies have been published in USA and the Nordic countries. Although the lack of mobile instruments, condition assessments of street lighting, rails, noise shields, glare shields, road signs, raised pavement markers and traffic signals have been documented. Such studies have been carried out using stationary instruments or by a subjective judgement. It is known that quality control improves performance, which has, for example, been documented in a Swedish 6-year study on road markings. Consequently, if checks of road equipment are carried out regularly, there is a reason to believe that this control would improve the road equipment performance, which, in turn, would be a benefit, not only for the road keeper but also the driver. Therefore, development of mobile instruments aimed for all types of road equipment is desirable.

References

Bernstein, R. 2000. Summary of evaluation findings for 30-meter hand-held and mobile pavement marking retroreflectometer. American Society of Civil Engineers, USA, 60.

Black, K. L.; McGee, H. W.; Hussain, S. F.; Rennilson, J. J. 1991. Service life of retroreflective traffic signs, Vienna, VA, 112.

Carlson, P. J.; Hawkins, H. G. 2003. Updated minimum retroreflectivity levels for traffic signs. Report No FHWA-RD-03-081. Texas Transportation Institute, Battelle Columbus Laboratories, Federal Highway Administration, USA, 107.

Forsman, G. 2001. Inventering och tillståndsbedömning av vägmärken, vägräcken och vägbelysning. Bilaga 2: Urval och skattningsformler [An inventory and assessment of road signs, rails and road lighting. Appendix 2: Selection and formulas for estimation]. Swedish Road Administration Streetation 2001:103, Borlänge, Sweden, 10.

Frank, H.; Ewald, J. 1995. Bestimmung des Mindestrückstrahlwerten im Gebrauchszustand für retroreflektierende Materialen zur Verkerhssicherung [Determination of in-service minimum retroreflectivity for road sign sheeting]. Federal Ministry of Transport, Building and Urban Affairs, Bonn-Bad Godesberg, Germany, 53.

Glenn, J.; Dodds, G.; Robinson, R. 2000. Calibration and use of camera-based systems for road lighting assessment, International Journal of Lighting Research and Technology 32(1): 33–40.

Hatzi, P. 2003. Maintaining traffic sign retroreflectivity, Report No FHWA-SA-03-027, Federal Highway Administration, Washington DC, 4.

Helmers, G.; Lundkvist, S. O.; Ytterbom, U.; Herland, L. 1999. Vägmärkens sannolika “livslängd” och minsta godtagbara retroreflexion [Probable length of life and acceptable retroreflectivity of road signs]. VTI Note 12-1999, Linköping, Sweden, 10.

Helmers, G.; Werner, G. 1992. Hur förändras trafiksignaler I drift? Effekter av driftstid i olika trafikmiljöer. Slutrapport [How does the performance of traffic signals in operation change? Effect of time in use in different road environments. Final Report], VTI Report 373, Linköping and Borås, Sweden, 39.

Jaquett, J.; Gudum, J. 1993. Blændningsafskærmning på motorveje. Sammendragsrapport [Glare shields on motorways. Summary Report]. Danish Road Directorate, Copenhagen, Denmark, 15.

Jenkins, S. E.; Gennaoui, F. R. 1993. Terminal values of road traffic signs, Special Report No N49, Australian Road Research Board, ARRB Transport Research, Limited, 156.

Johnson, R. A. 2004. Miller & Freund’s probability & statistics for engineers, Prentice Hall, 656.

Key, D.H.; Morgan, S.M.; Bodapati, S.N. 2001. Service life of Illinois highway noise barriers projected from current condition survey, Journal of Performance of Constructed Facilities 15(3): 82–89.

Kopf, J. 2004. Reflectivity of pavement markings: analysis of retroreflectivity degradation curves, Report No WA-RD 592.1.

Washington State Transportation Center, Washington State Department of Transportation, Federal Highway Administration, USA, 48.

Koucheki, B.; Lundkvist, S. O. 2006. Utvärdering av vägmarkeringar tillhörande klass 2 och 3 i VMN, VST och VN [Evaluation of road markings belonging to class 2 and 3 in VMN, VST and VN]. VTI Note 50 – 2005, Linköping, Sweden, 46.

Kronborg, P. 1999. More efficient traffic signals in Stockholm, TFK Mini Report MR 122, Stockholm, Sweden, 115.

Lagergren, E. A. 1987. Traffic sign reflectivity measurement using human observers, Final report, Report No WA-RD 140.1, Washington State Transportation Center; Washington State Dept of Transportation; Federal Highway Administration, USA, 155.

Lozev, M.; MacLaurin, C. C.; Butts, M.; Inigo, R. M. 1997. Prototype crawling robotics system for remote visual inspection of high-mast light poles, Report No FHWA/VTRC 98-R2, Virginia Transportation Research Council, Virginia Dept of Transportation, Federal Highway Administration, USA, 46.

Lundkvist, S. O. 2003. Tillståndsmätning av vägmarkeringarnas funktion i Norden 2002 [Condition assessment of road markings in the Nordic countries 2002]. VTI Note 15-2003, Linköping, Sweden, 33.

Maerz, N.; Niu, Q. 2003. Automated mobile highway sign retro-reflectivity measuremen, NCHRP-IDEA Program Project Final Report, 33.

Mohan, S.; Dutta, N.; Bajpal, R. K. 2004. Evaluation of visibility level of retroreflective road signs, Indian Highways 32(3): 41–49.

Nuber, L.; Bullock, D. 2002. Comparison of observed retroreflectivity values with proposed FHWA minimums, Transportation Research Record 1794: 29–37.

Nygårdhs, S.; Lundkvist, S. O. 2004. Tillståndsmätning av vägmarkeringarnas funktion i Norden 2003 [Condition assessment of road markings in the Nordic countries 2003], VTI Note 44-2004, Linköping, Sweden, 20.

Øbro, P. 1978. Nøjaktigheden av transportable vejmåleapparater [Accuracy of transportable measurement of road surface reflection]. The Danish Illuminating Engineering Laboratory, Note 119-38-(TR), Lyngby, Denmark, 26.

Odeh, R. E.; Owen, D. B. 1983. Attribute sampling plans, tables of tests and confidence limits for proportions, Marcel Dekker Inc, 384.

Schmidt, N. E. 2002. Handbok Vägmärken [Road sign manual]. Swedish Road Administration Streetation 2002:160, Borlänge, Sweden, 36.

Svedlund, J. 2001. Inventering och tillståndsbedömning av vägmärken, vägräcken och vägbelysning [An inventory and assessment of road signs, rails and road lighting]. Swedish Road Administration Streetation 2001:103, Borlänge, Sweden, 59.

Todd, R. 1990. Measurement of luminance to BS5489, Part 2, Lighting Journal 5(4): 241–245.

Ullman, G. L. 1994. Retroreflective raised pavement markers: a two-year field evaluation in Texas, Final report. Report No TX-94/1946-3F. Texas Transportation Institute, Texas Dept of Transportation, USA, 80.

Ullman, G. L.; Rhodes, L. R. 1996. Field test of a portable retroreflectometer for retroreflective raised pavement markers, Transportation Research Record 1529: 71–75.

Wagner, J. A. 1989. Investigation of legibility of sign letter and background type combinations under various conditions of weather and viewing and durability of reflective sheeting, Final Report. Florida Department of Transportation, Federal Highway Administration, 108.

Watts, G. R.; Surgand, M.; Morgan, P.A. 2002. Assessment of noise barrier diffraction using an in-situ measurement technique, Proc of the Institute of Acoustics 24(2): 10.

Wilken, D.; Ananthanarayanan, B.; Hasson, P.; Lutkevich, P. J.; Watson, P.; Burkett, K.; Arens, J.; Havard, J.; Unick, J. 2001. European road lighting technologies, Report No FHWA-PL- 01-034. American Trade Initiatives, Federal Highway Administration, USA, 80.

Zimmer, R. 1988. A mobile illumination evaluation system, Transport Research Record 1173: 68–73.

Downloads

Published

29.06.2008

How to Cite

Isacsson, U. (2008). Condition Assessment of Road Equipment – State-of-the-Art. The Baltic Journal of Road and Bridge Engineering, 3(2), 84-92. https://doi.org/10.3846/1822-427X.2008.3.84-92