Exchange of Heat in the Process of HMA Compaction

Paweł Mieczkowski


The temperature of asphalt mix during its laying out is not homogeneous. Apart from the aspect of the mass cooling during its transportation, the losses of heat are a result of climatic and weather conditions (the temperature and air humidity, wind, rainfall, etc.) the operation and manner of rollers compaction (their type, frequency of passes, etc.) water (technological and that contained in lower layers of the structure) and the location of the profile. Based on the rights, which govern the processes of heat exchange, one may anticipate the distribution of the temperature in a layer. This facilitates a proper planning of the process of compaction and getting required densities.


hot mix asphalt (HMA); heat exchange; convection; radiation; conducting; compaction

Full Text:



Chadbourn, B. A.; Luoma, J. A.; Newcomb, D. E.; Voller, V. R. 1996. Consideration of Hot-Mix Asphalt Thermal Properties during Compaction, in Quality Management of Hot-Mix Asphalt, ASTM STP 1299, Dale S. Decker, Ed., American Society for Testing and Materials. ISBN 0-8031-2024-9. doi:10.1520/STP16312S

Diefenderfer, B. K.; Al-Qadi, I. L.; Diefenderfer, S. D. 2006. Model to Predict Pavement Temperature Profile: Development and Validation, Journal of Transportation Engineering 132(2): 162–167. doi:10.1061/(ASCE)0733-947X(2006)132:2(162)

Hobler, T. 1984. Ruch ciepła i wymienniki [Movement of Heat and Heat Exchangers]. Warszawa: WNT. ISBN 83-204-0699-4.

Jendia, S.; Jarada, A. 2005. Traffic Opening Time and Time Available for Compaction for Fresh Sphalt Layer Using Slab Specimens Model, The Islamic University Journal 14(1): 11–35.

Mallick, R. B.; Chen, B. L; Bhowmick, S. 2009. Harvesting Energy from Asphalt Pavements and Reducing the Heat Island Effect, International Journal of Sustainable Engineering 2(3): 214–228. doi:10.1080/19397030903121950

Mieczkowski, P. 2006. The Heat Balance in the Process of Compacting of Hot Asphalt Mineral Mixture Using Steel Rollers, Archives of Civil Engineering LII(1): 151–175.

Mrawira, D. M.; Luca, J. 2006. Effect of Aggregate Type, Gradation, and Compaction Level on Thermal Properties of Hot-Mix Asphalts, Canadian Journal of Civil Engineering 33(11): 1410–1417. doi:10.1139/L06-076

Petkevičius, E.; Laurinavičius, A.; Petkevičius, R.; Babickas, R. 2009. Effect of Components Content on Properties of Hot Mix Asphalt Mixture and Concrete, The Baltic Journal of Road and Bridge Engineering 4(4): 161–167. doi:10.3846/1822-427X.2009.4.161-167

Timm, H. D.; Voller, R. V.; Lee, E.; Harvey, J. 2001. Calcool: A Multi-Layer Asphalt Pavement Cooling Tool for Temperature Prediction during Construction, The International Journal of Pavement Engineering 2(3): 169–185. doi:10.1080/10298430108901725

Wang, H.; Wu, S.; Chen, M.; Zhang, Y. 2010. Numerical Simulation on the Thermal Response of Heat-Conducting Asphalt Pavements, Physica Scripta 2010(T139). doi:10.1088/0031-8949/2010/T139/014041

Wise, J.; Lorio, R. 2004. A Practical Guide for Estimating the Compaction Window Time for Thin-Layer Hot Mix Asphalt, in Proc of the 8th Conference on Asphalt Pavements for Southern Africa, September 12–16, Sun City, South Africa.

Wiśniewski, S. 1988. Wymiana ciepła [Heat Exchange]. Warszawa: PWN. ISBN 83-01-07917-7.

Xu, Q.; Solaimanian, M. 2010. Modeling Temperature Distribution and Thermal Property of Asphalt Concrete for Laboratory Testing Applications, Constructions and Building Materials 24(4): 487–497. doi:10.1016/j.conbuildmat.2009.10.013

DOI: 10.3846/bjrbe.2010.27


  • There are currently no refbacks.

Copyright (c) 2010 Vilnius Gediminas Technical University (VGTU) Press Technika