The Physically Nonlinear Analysis of Circular Plate on Deformable Foundation

Authors

  • Valentinas Jankovski Dept of Structural Mechanics, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Valentinas Skaržauskas Dept of Structural Mechanics, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

DOI:

https://doi.org/10.3846/bjrbe.2011.08

Keywords:

circular plate, deformable foundation, contact problem, physical nonlinearity, finite element method, ANSYS, plastic strains of soil, three-dimensional model

Abstract

A circular reinforced concrete plate on deformable foundation is investigated. The foundation is composed of three layers of soil which are defined as isotropically nonlinear materials with variable physical properties. The reinforced plate is treated as an elastic body. The plate is subjected to dissymmetrical half-circular loading of linearly variable pressure. Generally, the unified system “structure-foundation” is the contact analysis problem, which is modeled by ANSYS software. Plastic shear deformations are evaluated by solving the contact problem by the finite element method. The comparative analysis, including the treatment of physically linear system “structure-foundation”, is performed. The comparison based on linear analysis shows that rigidity of the foundation generates higher extreme stresses in the plate in terms of the Huber-Mises criterion. However, in nonlinear analysis, the intensity of stresses is naturally decreasing, when a more flexible model of the foundation is used.

References

Amšiejus, J.; Dirgėlienė, N.; Norkus, A.; Žilionienė, D. 2009. Evaluation of Soil Shear Strength Parameters via Triaxial Testing by Height versus Diameter Ratio of Sample, The Baltic Journal of Road and Bridge Engineering 4(2): 54–60. doi:10.3846/1822-427X.2009.4.54-60

Amšiejus, J.; Kačianauskas, R.; Norkus, A.; Tumonis, L. 2010. Investigation of the Sand Porosity via Oedometric Testing, The Baltic Journal of Road and Bridge Engineering 5(3): 139–147. doi:10.3846/bjrbe.2010.20

Atkočiūnas, J.; Rimkus, L.; Skaržauskas, V.; Jarmolajeva, E. 2007. Optimal Shakedown Design of Plates, Mechanika 5(67): 14–23.

Atkočiūnas, J.; Jarmolajeva, E.; Merkevičiūtė, D. 2004. Optimal Shakedown Loading for Circular Plates, Structural and Multidisciplinary Optimization 27(3): 178–188. doi:10.1007/s00158-003-0308-5

Atkočiūnas, J. 1999. Mathematical Models of Optimization Problems at Shakedown, Mechanics Research Communications 26(3): 319–326. doi:10.1016/S0093-6413(99)00030-0

Barauskas, R.; Belevičius, R.; Kačianauskas, R. 2004. Baigtinių elementų metodo pagrindai [Fundamentals of Finite Element Method]. Vilnius: Technika. 612 p.

Çelik, M.; Saygun, A. 1999. A Method for the Analysis of Plates on a Two-Parameter Foundation, International Journal of Solids and Structures 36(19): 2891–2915. doi:10.1016/S0020-7683(98)00135-88

Cerioni, R.; Mingardi, L. 1996. Nonlinear Analysis of Reinforced Concrete Foundation Plates, Computers & Structures 61(1): 87‒106. doi:10.1016/0045-7949(95)00399-1

Cook, R. D. 1995. Finite Element Modeling for Stress Analysis. New York: John Wiley & Sons, 330 p.

Cook, R. D.; Malkus, D. S.; Plesha, M. E. 1989. Concepts and Applications of Finite Element Analysis. 3rd edition. New York: John Wiley & Sons. 456 p.

De Lima, B. S. L. P.; Teixeira, E. C.; Ebecken, N. F. F. 2001. Probabilistic and Possibilistic Methods for the Elastoplatic Analysis of Soils, Advances in Engineering Software 32(7): 569–585. doi:10.1016/S0965-9978(00)00102-2

Dirgėlienė, N.; Amšiejus, J.; Stragys, V. 2007. Effects of End Conditions on Soil Shear Strength Parameters During Triaxial Testing, in Proc. of the 9th International Conference Modern Building Materials, Structures and Techniques. May 16–18, 2007, Vilnius, Lithuania. Vilnius: Technika, 1120–1125.

Frank, R.; Thépot, O. 2005. Etude en petites déformations de l’interaction entre une fondation superficielle et une conduite enterrée [Research of Small Strains Due to an Interaction Between Shallow Foundation and Underground Pipeline], Revue Européenne de Génie Civil [European Journal of Environmental and Civil Engineering] 9(9–10): 1095–1109.

Frank, R.; Bauduin, C.; Driscoll, R.; Kavvadas, Krebs Ovesen, N.; Orr, T.; Schuppener, B. 2004. Designers’ Guide to EN 1997-1 Eurocode 7: Geotechnical Design – General Rules. Thomas Telford Publishing, 216 p.

Gallagher, R. H. 1975. Finite Element Analysis: Fundamentals. Englewood Cliffs: Prentice-Hall Inc. 420 p.

Gorbunov-Posadov, M. I.; Malikova, T. A. ; Solomin, V. I. 1984. Design of Structures on Elastic Foundation. 3rd edition. Moscow: Strojizdat. 674 p.

Guenfoud, S.; Bosakov, S. V.; Laefer, D. F. 2010. A Ritz’s Method Based Solution for the Contact Problem of a Deformable Rectangular Plate on an Elastic Quarter-Space, International Journal of Solids and Structures 47(14‒15): 1822‒1829. doi:10.1016/j.ijsolstr.2010.03.014

Hu, Y.; Randolph, M. F.; Watson, P. G. 1999. Bearing Response of Skirted Foundation on Nonhomogeneous Soil, Journal of Geotechnical and Geoenvironmental Engineering 125(11): 924–935. doi:10.1061/(ASCE)1090-0241(1999)125:11(924)

Jankovski, V.; Atkočiūnas, J. 2010. SAOSYS Toolbox as MATLAB Implementation in the Elastic-Plastic Analysis and Optimal Design of Steel Frame Structures, Journal of Civil Engineering and Management 16(1): 103–121. doi:10.3846/jcem.2010.10

Jankovski, V.; Atkočiūnas, J. 2010. Optimal Shakedown Design of Steel Frame Structures by SAOSYS Toolbox Software, in Proc. of the 10th International Conference Modern Building Materials, Structures and Techniques. May 19–21, 2010, Vilnius, Lithuania. Vilnius: Technika, 899–909.

Jankovski, V.; Atkočiūnas, J. 2008. MATLAB Implementation in Direct Probability Design of Optimal Steel Trusses, Mechanika 6(74): 30–37.

Kala, Z.; Melcher, J.; Puklický, L. 2009. Material and Geometrical Characteristics of Structural Steels Based on Statistical Analysis of Metallurgical Products, Journal of Civil Engineering and Management 15(3): 299‒307. doi:10.3846/1392-3730.2009.15.299-307

Kostantakopoulos, T. G.; Michaltsos, G. T. 2010. Modeling and Analysis of a Plate on Elastic Foundation Subjected to Landing Airplanes’ Forces, International Journal of Structural Stability and Dynamics 10(1): 37‒54. doi:10.1142/S0219455410003373

Krutinis, A.; Grigusevičius, A. 2004. New Statement of Contact Problem for Circular Plate on Deformable Soil, in Proc. of the 8th International Conference Modern Building Materials, Structures and Techniques. May 19–21, 2004, Vilnius, Lithuania. Vilnius: Technika, 814–819.

Lengyel, E. 2004. Mathematics for 3D Game Programming and Computer Graphics. 2nd edition. Charles River Media, Inc. 571 p.

Mastrojannis, E. N. 1986. Bending of an Axisymmetrically Loaded thin Circular Plate on a Layered Elastic Half-Space, Computers & Structures 23(6): 753–761. doi:10.1016/0045-7949(86)90243-9

Mučinis, D.; Sivilevičius, H.; Oginskas, R. 2009. Factors Determining the Inhomogeneity of Reclaimed Asphalt Pavement and Estimation of its Components Content Variation Parameters,The Baltic Journal of Road and Bridge Engineering 4(2):69–79. doi:10.3846/1822-427X.2009.4.69-79

Olsen, C. P. 1999. Rigid-Plastic Finite Element Analysis in Soil Mechanics, Danish Society for Structural Science and Engineering 70(5): 107–156.

Pavlik, G. N. 1977. Bending of a Circular Plate on a Linearly-Deformable Foundation under a Simultaneous Action of the Longitudinal and Transverse Forces, Journal of Applied Mathematics and Mechanics 41(5): 940–945. doi:10.1016/0021-8928(77)90178-2

Regalado, L. R.; Duncan, J. M.; Clough, G. W. 1992. Finite Element Analysis of Gravity Earth Retaining Structures Founded on Soil. Blacksburg, VA. 326 p.

Silviera, R. A. M.; Silva, A. R. D.; Goncalves, P. B. 1999. Behaviour of Plates under Contact Constraints Imposed by Elastic Foundations, in the International Conference on Computational Methods in Contact Mechanics: 4, Stuttgart, July, 201–210.

Skaržauskas, V.; Jankovski, V.; Atkočiūnas, J. 2009. Optimisation des structures métalliques élastoplastiques sous conditions de rigidité et de plasticité données [Optimization of Elastic-Plastic Steel Structures under Conditions of Rigidity and Plasticity], European Journal of Environmental and Civil Engineering 13(10): 1203–1219. doi:10.3166/ejece.13.1203-1219

Skaržauskas, V.; Jankovski, V.; Atkočiūnas, J. 2006. Sniego apkrovos veikiamo metalo ir stiklo denginio modeliavimas [Modeling of Glass-Steel Overlay and Snow Load], Technological and Economic Development of Economy 12(2): 118–123.

Starovoytov, E. I.; Dorovskaya, E. P.; Starovoytov, S. A. 2010. Cylindrical bending of an elastic rectangular sandwich plate on a deformable foundation, Mechanics of Composite Materials 46(1): 57‒68. doi:10.1007/s11029-010-9126-1

Šimkus, J. 1984. Gruntų mechanika, pagrindai ir pamatai [Soil Mechanics, Footings and Foundations]. Vilnius: Mokslas. 271 p.

Tsai, C. T.; Mall, S. 2000. Elasto-Plastic Finite Element Analysis of Fretting Stresses in Pre-Stressed Strip in Contact with Cylindrical Pad, Finite Elements in Analysis and Design 36(2): 171–187. doi:10.1016/S0168-874X(00)00016-0

Venskus, A.; Kalanta, S.; Atkočiūnas, J.; Ulitinas, T. 2010. Integrated Load Optimization of Elastic-Plastic Axisymmetric Plates at Shakedown, Journal of Civil Engineering and Management 16(2): 203‒208. doi:10.3846/jcem.2010.22

Wang, Y. H.; Tham, L. G.; Tsui, Y.; Yue, Z. Q. 2003. Plate on Layered Foundation Analyzed by a Semi-Analytical and Semi-Numerical Method, Computers and Geotechnics 30(5): 409‒418. doi:10.1016/S0266-352X(03)00014-4

Wilson, E. L. 2002. Three-Dimensional Static and Dynamic Analysis of Structures. A Physical Approach With Emphasis on Earthquake Engineering. 3rd edition. Computers and Structures, Inc., University Avenue Berkeley, California. 423 p.

Xing, H. L.; Makinouchi, A.; Zhao, C. 2008. Three-Dimensional Finite Element Simulation of Large-Scale Nonlinear Contact Friction Problems in Deformable Rocks, Journal of Geophysics and Engineering 5(1): 27‒36. doi:10.1088/1742-2132/5/1/003

Yu, Hai-Sui. 2006. Plasticity and Geotechnics. University of Nottingham, UK. Springer Science and Business Media, LLC. 517 p.

Zienkiewicz, O. C. 1977. The Finite Element Method. 3rd edition. McGraw-Hill, London.

Образцов, И. Ф.; Савельев, Л. М.; Хазанов, Х. С. 1985. Метод конечных элементов в задачах строительной механики летательных аппаратов [Obrazcov, I. F.; Saveljev, L. M.; Chazanov, Ch. C. The Finite Element Method in Problems of Aircraft Structural Mechanics]. Мocква: Высш. шк. 392 с.

Downloads

Published

27.03.2011

How to Cite

Jankovski, V., & Skaržauskas, V. (2011). The Physically Nonlinear Analysis of Circular Plate on Deformable Foundation. The Baltic Journal of Road and Bridge Engineering, 6(1), 59-66. https://doi.org/10.3846/bjrbe.2011.08