Investigation of Shrinkage of Concrete Mixtures Used for Bridge Construction in Lithuania

Viktor Gribniak, Gintaris Kaklauskas, Darius Bacinskas, Wen-Pei Sung, Aleksandr Sokolov, Darius Ulbinas


The present paper reports results of the investigation on shrinking of the concrete mixture which is often used for casting the new bridges. The study is based on the experimental results obtained in three research projects which were performed under financial support provided by the Lithuanian State Fund of Research and Studies at the Vilnius Gediminas Technical University from 2005 to 2009. The accuracy of the most popular shrinkage prediction techniques was analysed using the test data. The analysis has shown that the Eurocode 2 method has given the most accurate predictions. The attention was also pointed on the analysis of the steel fibres influence on the shrinkage deformations of the structural concrete. The performed statistical analysis has indicated that the steel fibres application as admixture significantly reduced the free shrinkage strains. The paper has concluded that utilisation of the steel fibres is very effective way of increasing the service properties of concrete bridges.


shrinkage; calculation methods; experiments; steel fibers; concrete bridge; hypothesis test

Full Text:



Bacinskas, D.; Gribniak, V.; Kaklauskas, G. 2009. Statistical Analysis of Long-Term Deflections of RC Beams, in Proc. of the 8th International Conference “Creep, Shrinkage and Durability of Concrete and Concrete Structures” (ConCreep 8). September 30 – October 2, 2008, Ise-Shima, Japan. London: CRC Press/Balkema, Taylor & Francis Group, 1: 565–570. doi:10.1201/9780203882955.ch74

Barr, B.; Hoseinian, S. B.; Beygi, M. A. 2003. Shrinkage of Concrete Stored in Natural Environments, Cement and Concrete Composites 25(1): 19–29. doi:10.1016/S0958-9465(01)00044-0

Bažant, Z. P.; Baweja, S. 1995a. Justification and Refinements of Model B3 for Concrete Creep and Shrinkage. Statistics and Sensitivity, Materials and Structures 28(7): 415–430. doi:10.1007/BF02473078

Bažant, Z. P.; Baweja, S. 1995b. Justification and Refinements of Model B3 for Concrete Creep and Shrinkage. Updating and Theoretical Basis, Materials and Structures 28(8): 488–495. doi:10.1007/BF02473171

Daly, A. F. 1999. Modelling of Deterioration in Bridges. Deliverable. Bridge Management in Europe, D11, PL97-2220. UK: Transport Research Laboratory. 75 p.

Gardner, N. J.; Lockman, M. J. 2001. Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete, ACI Materials Journal 98(2): 159–167.

Gribniak, V. 2009. Shrinkage Influence on Tension-Stiffening of Concrete Structures: PhD thesis. Vilnius Gediminas Technical University, Vilnius, Lithuania. 146 p.

Gribniak, V.; Kaklauskas, G.; Bacinskas, D. 2007. State-of-art Review on Shrinkage Effect on Cracking and Deformations of Concrete Bridge Elements, The Baltic Journal of Road and Bridge Engineering 2(4): 183–193.

Gribniak, V.; Kaklauskas, G.; Bacinskas, D. 2008. Shrinkage in Reinforced Concrete Structures: A Computational Aspect, Journal of Civil Engineering and Management 14(1): 49–60. doi:10.3846/1392-3730.2008.14.49-60

Gribniak, V.; Kaklauskas, G.; Čygas, D.; Bacinskas, D.; Kupliauskas, R.; Sokolov, A. 2010. Investigation of Concrete Cracking Effect in Deck Slab of Continuous Bridges, The Baltic Journal of Road and Bridge Engineering 5(2): 83–88. doi:10.3846/bjrbe.2010.12

Kaklauskas, G.; Gribniak, V.; Bacinskas, D.; Christiansen, M. B. 2005. Naujo inžinerinio gelžbetoninių elementų deformacijų skaičiavimo metodo kūrimas [New Method for Deformation Analysis of Reinforced Concrete Structures]. Final Report No. T-104/05. Vilnius Gediminas Technical University. 35 p.

Kaklauskas, G.; Christiansen, M. B.; Bacinskas, D.; Gribniak, V. 2008. Gelžbetoninių elementų deformacijų modelis, įvertinantis betono susitraukimą ir valkšnumą iki eksploatacinėje stadijoje [Constitutive Model for Reinforced Concrete Members Taking into Account Concrete Creep and Shrinkage at Pre-Loading Stage]. Final Report No. T-1025/08. Vilnius Gediminas Technical University. 53 p.

Kaklauskas, G.; Gribniak, V. 2011. Eliminating Shrinkage Effect from Moment-Curvature and Tension-Stiffening Relationships of Reinforced Concrete Members, ASCE Journal of Structural Engineering (in press). doi:10.1061/(ASCE)ST.1943-541X.0000395

Kaklauskas, G.; Gribniak, V.; Bacinskas, D.; Vainiūnas, P. 2009a. Shrinkage Influence on Tension Stiffening in Concrete Members, Engineering Structures 31(6): 1305–1312. doi:10.1016/j.engstruct.2008.10.007

Kaklauskas, G.; Holschemacher, K.; Gribniak, V.; Bacinskas, D.; Sokolov, A. 2009b. Dispersiškai armuotų gelžbetoninių elementų įtempių ir deformacijų modelis [A Stress-strain Constitutive Relationship of Steel Fibre Reinforced Concrete]. Final Report No. T-101/09. Vilnius Gediminas Technical University. 57 p.

Lampropoulosa, A. P.; Dritsos, S. E. 2011. Concrete Shrinkage Effect on the Behavior of RC Columns under Monotonic and Cyclic Loading, Construction and Building Materials 25(4): 1596–1602. doi:10.1016/j.conbuildmat.2010.10.001

Mardia, K. V.; Zemroch, P. J. 1978. Tables of the F- and Related Distributions with Algorithms. New York: Academic Press. 256 p.

Satterwaite, R. 1946. An Approximate Distribution of Estimates of Variance Components, Biometrics Bulletin 2(6): 110–114. doi:10.2307/3002019

Shah, S. P.; Sarigaphuti, M.; Karaguler, M. E. 1994. Comparison of Shrinkage Cracking Performance of Different Types of Fibers and Wiremesh, Fiber Reinforced Concrete – Developments and Innovation, ACI Special Publications 142: 1–18.

Swamy, R. N.; Stavrides, H. 1979. Influence of Fiber Reinforcement in Restrained Shrinkage and Cracking, ACI Journal Proceedings 76(3): 443–460.

Zanuy, C. 2010. Investigating the Negative Tension Stiffening Effect of Reinforced Concrete, Structural Engineering and Mechanics 34(2): 189–211.

DOI: 10.3846/bjrbe.2011.10


  • There are currently no refbacks.

Copyright (c) 2011 Vilnius Gediminas Technical University (VGTU) Press Technika