Dynamic Fracture Criteria Evaluation of Bridge Structural Steel
Abstract
J-integral is the main effective and commonly used tool for elastic-plastic cracked material resistance assessment. Considering ductile behavior of bridges steel integral approach is suitable for fracture toughness evaluation. The paper presents the method of dynamic fracture parameter J-integral evaluation in case of elastic-plastic deformation of bridge structural steel. This experimental technique is based on determination of impact fracture energies and displacements which correspond to these energies at the moment when loading rate reaches max and fracture loads. Theoretical solutions were confirmed by experimental data obtained from Three-Point Bend tests of rectangular cross section specimens with V form notch. Impact loading was generated by impact tester with drop weight. 5 series of specimens with different geometry were tested during experiment. The developed methodology enables to predict the impact fracture toughness of bridge structural elements.
Keywords: |
dynamic fracture toughness; impact loading; structural steel; Three-Point Bend; structural steel; load-displacement curve
|
Full Text: |
References
Chaouadi, R.; Puzzolante, J. L. 2008. Loading Rate Effect on Ductile Crack Resistance of Steels Using Precracked Charpy Specimens, International Journal of Pressure Vessels and Piping 85(11): 752–761. doi:10.1016/j.ijpvp.2008.08.004
Eriksson, K. 2010. A Three-Point Bend Specimen with Partly Tapered Cross-Section Sides, Engineering Fracture Mechanics 77(10): 1537–1551. doi:10.1016/j.engfracmech.2010.04.017
Fengchun, J.; Ruitang, L.; Xiaoxin, Z.; Vecchio, K. S.; Rohatgi, A. 2004. Evaluation of Dynamic Fracture Toughness KId by Hopkinson Pressure Bar Loaded Instrumented Charpy Impact Test, Engineering Fracture Mechanics 71(3): 279–287. doi:10.1016/S0013-7944(03)00139-5
Janutėnienė, J.; Didžiokas, R.; Gintalas, M. 2009. Analysis of the Variation of Metals Mechanical Properties Depending on Operation Time, Mechanika [Mechanics] 1(75): 26–30.
Kala, Z.; Melcher, J.; Puklicky, L. 2009. Material and Geometrical Characteristics of Structural Steels Based on Statistical Analysis of Metallurgical Products, Journal of Civil Engineering and Management 15(3): 299–307. doi:10.3846/1392-3730.2009.15.299-307
Nykyforchyn, H.; Lunarska, E.; Tsyrulnyk, O. T.; Nikiforov, K.; Genarro, M. E.; Gabetta, G. 2010. Environmentally Assisted “In-Bulk” Steel Degradation of Long Term Service Gas Trunkline, Engineering Failure Analysis 17(3): 624–632. doi:10.1016/j.engfailanal.2009.04.007
Reis, M.; Pala, Y. 2009. Dynamic Response of a Slightly Curved Bridges Under Moving Mass Loads, The Baltic Journal of Road and Bridge Engineering 4(3): 143–148. doi:10.3846/1822-427X.2009.4.143-148
Santana, O. O.; Rodríguez, C.; Belzunce, J.; Gámez-Pérez, J.; Carrasco, F.; Maspoch, M. Ll. 2010. Fracture Behaviour of De-aged Poly (Lactic Acid) Assessed by Essential Work of Fracture and J-integral Methods, Polymer Testing 29(8): 984–990. doi:10.1016/j.polymertesting.2010.09.004
Sreenivasan, P. R. 2008. Estimation of ASTM E-1921 Reference Temperature from Charpy Tests: Charpy Energy-Fracture Toughness Correlation Method, Engineering Fracture Mechanics 75(18): 5229–5245. doi:10.1016/j.engfracmech.2008.08.007
Sreenivasan, P. R.; Mannan, S. L. 2000. Plastic η-factor for Three-Point Bend Specimen: Analysis of Instrumented Charpy Impact Test Results for AISI 308 Weld and AISI 316 Stainless Steels, International Journal of Fracture 101(3): 215–228. doi:10.1023/A:1007686321002
Xu, S.; Zhang, X. 2008. Determination of Fracture Parameters for Crack Propagation in Concrete Using an Energy Approach, Engineering Fracture Mechanics 75(15): 4292–4308. doi:10.1016/j.engfracmech.2008.04.022
Zhu, X. K. 2009. J-integral Resistance Curve Testing and Evaluation, Journal of Zhejiang University – Science A 10(11): 1541–1560. doi:10.1631/jzus.A0930004
DOI: 10.3846/bjrbe.2011.12
Refbacks
- There are currently no refbacks.
Copyright (c) 2011 Vilnius Gediminas Technical University (VGTU) Press Technika