Simplified Engineering Method of Suspension Two-Span Pedestrian Steel Bridges With Flexible and Rigid Cables Under Action of Asymmetrical Loads

Authors

  • Giedrė Sandovič Dept of Bridges and Special Structures, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Algirdas Juozapaitis Dept of Bridges and Special Structures, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
  • Romualdas Kliukas Dept of Strength of Materials, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

DOI:

https://doi.org/10.3846/bjrbe.2011.34

Keywords:

suspension steel bridges, pedestrian bridges, steel stress-ribbon, asymmetric loading, kinematic displacements, elastic displacements, bending stiffness, cables rigidity

Abstract

The article deals with two spans steel split-type one band pedestrian suspension bridge structure. Structural behaviour of such suspension member subjected to asymmetrical load has been discussed under the condition of temporary load influence imposed on one span out of two. Two structural solutions of one band suspension bridges have been considered: with completely flexible retaining elements, and in case of bending rigid. The article provides analytical expressions for calculations of the displacements of these asymmetrically loaded suspended elements, thrust forces and bending moments. Simplified analytical method accuracy of one band bridges is illustrated on the basis of performed numerical experiment Performed numerical experiment shows the resulting basis of simplified analytical method accuracy of one band bridges.

References

Caetano, E.; Cunha, A. 2004. Experimental and Numerical Assessment of the Dynamic Behaviour of a Stress-Ribbon Footbridge, Structural Concrete 5(1): 29–38. doi:10.1680/stco.2004.5.1.29

Fürst, A.; Marti, P.; Ganz, H. R. 2001. Bending of Stay Cables, Structural Engineering International 11(1): 42–46. doi:10.2749/101686601780324313

Gimsing, N. J. 1997. Cable Supported Bridges: Concept and Design. 2nd edition. John Wiley & Sons, Chichester. 480 p. ISBN 0471969397

Grigorjeva, T.; Juozapaitis, A.; Kamaitis, Z. 2010. Static Analysis and Simplified Design of Suspension Bridges Having Various Rigidity of Cables, Journal of Civil Engineering and Management 16(3): 363–371. doi:10.3846/jcem.2010.41

Juozapaitis, A.; Idnurm, S.; Kaklauskas, G.; Idnurm, J.; Gribniak, V. 2010. Non-Linear Analysis of Suspension Bridges with Flexible and Rigid Cables, Journal of Civil Engineering and Management 16(1): 149–154. doi:10.3846/jcem.2010.14.

Juozapaitis, A.; Norkus, A.; Vainiūnas, P. 2008. Shape Stabilization of Steel Suspension Bridge, The Baltic Journal of Road and Bridge Engineering 3(3): 137–144. doi:10.3846/1822-427X.2008.3.137-144

Juozapaitis, A.; Vainiūnas, P.; Kaklauskas, G. 2006. A New Steel Structural System of a Suspension Pedestrian Bridge, Journal of Constructional Steel Research 62(12): 1257–1263. doi:10.1016/j.jcsr.2006.04.023

Juozapaitis, A.; Norkus, A. 2004. Displacement Analysis of Asymmetrically Loaded Cable, Journal of Civil Engineering and Management 10(4): 277–284. doi:10.1080/13923730.2004.9636320

Kala, Z. 2008. Fuzzy Probability Analysis of the Fatigue Resistance of Steel Structural Members under Bending, Journal of Civil Engineering and Management 14(1): 67–72. doi:10.3846/1392-3730.2008.14.67-72

Katchurin, V. K. 1969. Staticheskij raschet vantovykh sistem [Статический расчет вантовых систем]. Leningrad: Stroyizdat. 141 p.

Kulbach, V. 1999. Half-Span Loading of Cable Structures, Journal of Constructional Steel Research 49(2): 167–180. doi:10.1016/S0143-974X(98)00215-6

Kulbach, V. 2007. Cable Structures. Design and Analysis. Tallin, Estonian Academy Publisher. 224 p.

Moskalev, N. S. 1981. Konstrukcii visyachikh pokrytij [Конструкции висячих покрытий]. Moskva: Stroyizdat. 335 p.

Michailov, V. V. 2002. Predvaritelno napryazhennyje kombinirovannyje i vantovye konstrukciji [Предварительно напряженные комбинированные и вантовые конструкции]. Moskva: ACB. 255 p.

Prato, C. A.; Ceballos, M. A. 2003. Dynamic Bending Stresses Near the Ends of Parallel Bundle Stay Cables, Structural Engineering International 13(1): 64–68. doi:10.2749/101686603777965008

Ryall, M.; Parke, G. A. R.; Harding, J. E. 2000. Manual of Bridges Engineering. London: Tomas Telford Ltd. 1007 p. ISBN 0727727745

Schlaich, J.; Bergerman, R. 1992. Fuβgängerbrücken [Footbridges]. Zurich (ETH): Schwabische Drückerei GmbH.

Schlaich, M.; Brownlie, K.; Conzett, J.; Sobrino, J.; Strasky, J.; Takenouchi, Mrs. Kyo. 2005. fib Bulletin 32. Guidelines for the design of footbridges. Sprint-Digital-Druck, Stuttgart. p. 154. ISSN 1562-360, ISBN 2-88394-072X

Strasky, J. 2005. Stress-Ribbon and Supported Cable Pedestrian Bridges. London: Thomas Telford Ltd. 240 p. ISBN 9780727732828. doi:10.1680/sracspb.32828

Tarvydaitė, G.; Juozapaitis, A. 2010. The Kinematic Displacements of the Two-Spans Single Lane Suspension Steel Footbridge and Their Stabilization, Engineering Structures and Technologies 2(4): 155–162.

Troyano, L. F. 2003. Bridge Engineering: A Global Perspective. London: Tomas Telford Ltd. 775 p. ISBN 0727732153

Wollmann, G. P. 2001. Preliminary Analysis of Suspension Bridges, Journal of Bridge Engineering 6(4): 227–233. doi:10.1061/(ASCE)1084-0702(2001)6:4(227)

Wyatt, T. A. 2004. Effect of Localised Loading on Suspension Bridges, in Proc. of the Institution of Civil Engineers. Bridge Engineering 157, Issue BE2. 55–63. doi:10.1680/bren.2004.157.2.55

Downloads

Published

27.12.2011

How to Cite

Sandovič, G., Juozapaitis, A., & Kliukas, R. (2011). Simplified Engineering Method of Suspension Two-Span Pedestrian Steel Bridges With Flexible and Rigid Cables Under Action of Asymmetrical Loads. The Baltic Journal of Road and Bridge Engineering, 6(4), 267-273. https://doi.org/10.3846/bjrbe.2011.34