Investigation of Geogrid Aperture Size Effects on Subbasesubgrade Stabilization of Asphalt Pavements

Tuba Sert, Muhammet Vefa Akpınar

Abstract


The increased use of geogrids in highway pavement subbase layer reinforcement applications has resulted in a need to better understand the soil–geogrid interface properties for the use in analysis and design. For this purpose, a series of laboratory large scale pullout tests was carried out with three different aperture size geogrid samples randomly sampled from a single manufacturer. It was found that geogrids are unique in their pullout performance within pavement subbase layer structure based on their aperture sizes. Analysis indicates a strong relationship between pullout performance and geogrid aperture size of geogrids at moderate normal stress levels. Such findings aid in selection of appropriate geogrid types for subgrade and subbase interface reinforcement purposes. Further experimental analysis was conducted to investigate the wide-width tensile test performance for the same samples used in the pullout tests in this study.


Keywords:

large scale pullout test device; geogrid aperture size; wide-width tensile test; asphalt pavements; subbasesubgrade

Full Text:

PDF

References


Alagiyawanna, A. M. N.; Sugimoto, M.; Sato, S.; Toyota, H. 2001. Influence of Longitudinal and Transverse Members on Geogrid Pullout Behaviour During Deformation, Geotextiles and Geomembranes 19(8): 483–507. http://dx.doi.org/10.1016/S0266-1144(01)00020-6

Alamshahi, S.; Hataf, N. 2009. Bearing Capacity of Strip Footings on Sand Slopes Reinforced with Geogrid and Grid-Anchor, Geotextiles and Geomembranes 27(3): 217–226. http://dx.doi.org/10.1016/j.geotexmem.2008.11.011

Abusharar, S. W.; Zheng, J.-J.; Chen, B.-G.; Yin, J.-H. 2009. A simplified method for analysis of a piled embankment reinforced with geosynthetics, Geotextiles and Geomembranes 27: 39–52. http://dx.doi.org/10.1016/j.geotexmem.2008.05.002

Cancelli, A.; Montanelli, F. 1999. In-ground Test for Geosynthetic Reinforced Flexible Paved Roads, in The Conference “Geosynthetics‘ 99: Specifying Geosynthetics and Developing Design Details”, vol. 2. April 28‒30, Boston, Massachusetts, USA. 863–879.

Dong, Y.-L.; Han, J.; Bai, X.-H. 2011. Numerical Analysis of Tensile Behavior of Geogrids with Rectangular and Triangular Apertures, Geotextiles and Geomembranes 29(2): 83‒91. http://dx.doi.org/10.1016/j.geotexmem.2010.10.007

Dong, Y. L.; Han, J.; Bai, X. H. 2010. Bearing Capacities of Geogrid-Reinforced Sand Bases under Static Loading, in Proc. of the GeoShanghai 2010 International Conference. June 3‒5, 2010, Shanghai, China. Ground Improvement and Geosynthetics. Geotechnical Special Publication No. 207. Ed by Puppala, A. J.; Huang, J.; Han, J.; Hoyos, L. R. 275‒281.

Ghosh, C.; Madhav, M. R. 1994. Reinforced Granular Fill-Soft Soil System: Membrane Effect, Geotextiles and Geomembranes 13(11): 743–759. http://dx.doi.org/10.1016/0266-1144(94)90061-2

Fang, H.; Hand, A. J.; Haddock, J. E., White, T. D. 2007. An Object-Oriented Framework for Finite Element Pavement Analysis, Advances in Engineering Software 38(11‒12): 763‒771. http://dx.doi.org/10.1016/j.advengsoft.2006.08.045

Jewell, R. A. 1990. Reinforcement Bond Capacity, Geotechnique 40(3): 513–518. http://dx.doi.org/10.1680/geot.1990.40.3.513

Kongkitkul, W.; Tatsuoka, F.; Hirakawa, D.; Sugimoto, T.; Kawahata, S.; Ito, M. 2010. Time Histories of Tensile Force in Geogrid Arranged in Two Full-Scale High Walls, Geosynthetics International 17(1): 12‒33. http://dx.doi.org/10.1680/gein.2010.17.1.12

Lopes, M. L.; Ladeira, M. 1996. Influence of the Confinement, Soil Density and Displacement Rate on Soil–Geogrid Interaction, Geotextiles and Geomembranes 14(10): 543–554. http://dx.doi.org/10.1016/S0266-1144(97)83184-6

Moraci, N.; Mandaglio, M. C.; Ielo, D. 2012. A New Theoretical Method to Evaluate the Internal Stability of Granular Soils, Canadian Geotechnical Journal 49(1): 42‒58. http://dx.doi.org/10.1139/t11-083

Moraci, N.; Gioffrè, D. A. 2006. Simple Method to Evaluate the Pullout Resistance of Extruded Geogrids Embedded in a Compacted Gronuler Soil, Geotextiles and Geomembranes 24(2): 116‒128. http://dx.doi.org/10.1016/j.geotexmem.2005.11.001

Mulungye, R. M.; Owende, P. M. O.; Mellon, K., 2007. Finite Element Modelling of Flexible Pavements on Soft Soil Subgrades, Materials and Design 28(3): 739–756. http://dx.doi.org/10.1016/j.matdes.2005.12.006

Palmeira, E. M.; Antunes, L. G. S. 2010. Large Scale Tests on Geosynthetic Reinforced Unpaved Roads Subjected to Surface Maintenance, Geotextiles and Geomembranes 28(6): 547‒558. http://dx.doi.org/10.1016/j.geotexmem.2010.03.002

Palmeira, E. M. 2009. Soil–Geosynthetic Interaction: Modelling and Analysis, Geotextiles and Geomembranes 27(5): 386‒390. http://dx.doi.org/10.1016/j.geotexmem.2009.03.003

Palmeira, E. M. 2004. Bearing Force Mobilisation in Pull-Out Tests on Geogrids, Geotextiles and Geomembranes 22(6): 481–509. http://dx.doi.org/10.1016/j.geotexmem.2004.03.007

Palmeira, E. M.; Milligan, G. W. E. 1989. Scale and other Factors Affecting the Results of Pull-Out Tests of Grid Buried in Sand, Géotechnique 39(3): 511–524. http://dx.doi.org/10.1680/geot.1989.39.3.511

Park, D.-W. 2008. Prediction of Pavement Fatigue and Rutting Life Using Different Tire Types, KSCE Journal of Civil Engineering 12(5): 297‒303. http://dx.doi.org/10.1007/s12205-008-0297-4

Perkins, S. W. 1999. Mechanical Response of Geosynthetic Reinforced Flexible Pavements, Geosynthetics International 6(5): 347–382.

Phanikumar, B. R.; Prasad, R.; Singh, A. 2009. Compressive Load Response of Geogrid-Reinforced Fine, Medium and Coarse Sands, Geotextiles and Geomembranes 27(3): 183–186. http://dx.doi.org/10.1016/j.geotexmem.2008.11.003

Priest, A. L.; Timm, D. H.; Barrett, W. E. 2005. Mechanistic Comparison of Wide-Base Single Versus Standard Dual Tire Configurations. NCAT Report 05-03.

Rowe, R. K.; Taechakumthorn, C. 2011. Design of Reinforced Embankments on Soft Clay Deposits Considering the Viscosity of Both Foundation and Reinforcement, Geotextiles and Geomembranes 29(5): 448‒461. http://dx.doi.org/10.1016/j.geotexmem.2011.03.001

Sert, T.; Akpinar, M. V. 2011. Investigation of Geogrid Performance on Highway Subbase by Using the Pullout Test Device, Technical Journal of Turkish Champer of Civil Engineers 22(1): 5285‒5304.

Subaida, E. A.; Chandrakaran, S.; Sankar, N. 2009. Laboratory Performance of Unpaved Roads Reinforced Withwoven Coir Geotextiles, Geotextiles and Geomembranes 27(3): 204–210. http://dx.doi.org/10.1016/j.geotexmem.2008.11.009

Sugimoto, M.; Alagiyawanna, A. M. N.; Kadoguchi, K. 2001. Influence of Rigid and Flexible Face on Geogrid Pullout Tests, Geotextiles and Geomembranes 19(5): 257–328. http://dx.doi.org/10.1016/S0266-1144(01)00011-5

Teixeira, S. H. C.; Bueno, B. S.; Zornberg, J. G. 2007. Pullout Resistance of Individual Longitudinal and Transverse Geogrid Ribs, Journal of Geotechnical and Geoenvironmental Engineering 133(1): 37‒50. http://dx.doi.org/10.1061/(ASCE)1090-0241(2007)133:1(37)

Wu, Z. 2007. Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility, in Proc. of International Conference on Transportation Engineering 2007. February 11‒14, 2007, Baton Rouge, Louisiana, USA.

Yeo, S. S.; Hsuan, Y. G. 2010. Evaluation of Creep Behavior of High Density Polyethylene and Polyethylene-Terephthalate Geogrids, Geotextiles and Geomembranes 28(5): 409‒421. http://dx.doi.org/10.1016/j.geotexmem.2009.12.003




DOI: 10.3846/bjrbe.2012.22

Cited-By

1. Influence of geogrid type and coarse grain size on pull out behaviour of clays reinforced with geogrids embedded in thin granular layers
M. R. Abdi, A. R. Zandieh, H. Mirzaeifar, M. A. Arjomand
European Journal of Environmental and Civil Engineering  first page: 1  year: 2019  
doi: 10.1080/19648189.2019.1619627

Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Vilnius Gediminas Technical University (VGTU) Press Technika