System for the Global Monitoring and Evaluation of Damage Processes Developing Within Concrete Structures Under Service Loads

Authors

  • Leszek Gołaski Dept of Civil and Environmental Engineering, Kielce University of Technology, al. 1000-lecia P. P. 7, Kielce, 25-314, Poland
  • Barbara Goszczyńska Dept of Civil and Environmental Engineering, Kielce University of Technology, al. 1000-lecia P. P. 7, Kielce, 25-314, Poland
  • Grzegorz Świt Dept of Civil and Environmental Engineering, Kielce University of Technology, al. 1000-lecia P. P. 7, Kielce, 25-314, Poland
  • Wiesław Trąmpczyński Dept of Civil and Environmental Engineering, Kielce University of Technology, al. 1000-lecia P. P. 7, Kielce, 25-314, Poland

DOI:

https://doi.org/10.3846/bjrbe.2012.32

Keywords:

destructive process, prestressed concrete, AE model database for damage processes, service load

Abstract

In this paper, a global monitoring system based on the measurement of acoustic emission (AE) due to active deterioration processes is presented. This allows to examine the entire volume of an element and to locate (with an accuracy of the measuring zones) and identify the type and the dynamics of deterioration processes under service conditions. The resulting data are used to determine and locate the damage processes that are dangerous in construction and to assess the general condition of the structure as well as the degree of risk.

References

Anastsopoulos, A. A. 2007. Signal Processing and Pattern Recognition of AE Signatures, in Proc. of the 13th International Conference on Experimental Analysis of Nano and Engineering Materials and Structures. Ed. by Gtoutos, E. July 1–6, 2007, Alexandropolis, Grece. Springer Netherlands: 928–930. http://dx.doi.org/10.1007/978-1-4020-6239-1_462

Beck, P.; Bradshaw, T. P.; Lark, R. J.; Holford, K. M. 2003a. A Quantitative Study of the Relationship between Concrete Crack Parameters and Acoustic Emission Released during Failure, Key Engineering Material 245–246: 461–466. http://dx.doi.org/10.4028/www.scientific.net/KEM.245-246.461

Beck, P.; Lark, R. J.; Holford, K. M. 2003b. Moment Tensor Analysis of Acoustic Emission in Concrete Specimens Failed in Four-Point Bending, Key Engineering Material 245–246: 443–450. http://dx.doi.org/10.4028/www.scientific.net/KEM.245-246.443

Blanch, M. J.; Kouroussis, D. A.; Anastassopoulos, A. A.; Nikolaidis, V. N.; Proust, A.; Dutton, A. G.; Jones, L. E.; Vionis, P.; Lekou, D. J.; DRV van Delft; Joosse, P. A.; Philippidis, T. P.; Kossivas, T.; Fernando, G. 2002. Damage Classification of Acoustic Emission Using AEGIS Pattern Recognition Software from Ten Small Wind Turbine Blade Tests, in Global Windpower. April 2–5, 2002, Paris, France.

Colombo, S.; Main, I. G.; Forde, M. C.; Halliady, J. 2002. Acoustic Emission on Bridges: Experiments on Concrete Beams, in Proc. of the 25th European Conference on Acoustic Emission Testing. Ed. by Mazal, P. September 11–13, 2002, Prague, Czech. Czech Society for Non-Destructive Testing, I/127–134.

Diederichs, U.; Schneider, U.; Terrien, M. 1983. Formation and Propagation of Cracks and Acoustic Emission, in Fracture Mechanics of Concrete, ed. by Wittman, F. H. Elsevier. 680 p.

Gołaski, L.; Goszczyńska, B.; Goszczyński, S.; Trąmpczyński, W. 2009. Problems of Diagnostic of Structures on the Example of Bridge Construction, Autostrady 12: 68–77.

Gołaski, L.; Świt, G.; Kalicka, M.; Kanji, O. 2006. Acoustic Non Destructive Techniques as a New Method for Evaluation of Damages in Prestressed Concrete Structures: Failure of Concrete Structures, Journal of Acoustic Emission 24: 187–195.

Gołaski, L.; Świt, G. 2005. Acoustic Non Destructive Techniques as a New Method for Evaluation of Damages in Prestressed Concrete Structures: Failure of Concrete Structures, in Workshop of COST 534 on NTD Assessment and New Systems in Prestressed Concrete Structures, Kielce-Brussels: 151–159.

Goszczyńska, B.; Świt, G.; Trąmpczyński, W.; Krampikowska, A.; Tworzewska, J.; Tworzewski, P. 2012a. Experimental Validation of Concrete Crack Identification and Location with Acoustic Emission Method, Archives of Civil and Mechanical Engineering 12(1): 23–28. http://dx.doi.org/10.1016/j.acme.2012.03.004

Goszczyńska, B.; Świt, G., Trąmpczyński, W.; Krampikowska, A. 2012b. Application of the Acoustic Emission to Bridge Testing and Diagnosis, Comparison of Procedures, in Proc. of the IEEE 2012 Prognostic and System Health Management Conference. May 23–25, 2012, Beijng, China. ISBN 9781457719110.

Hadzor, T. T.; Barnes, R. W.; Ziehl, P. H.; Xu, J.; Schindler, A. K. 2011. Develpoment of Acoustic Emission Evaluation Method for Repaired Prestressed Concrete Bridge Girders. Research Report No. 2 for ALDOT Project 930-601. Highway Research Center, Dept of Civil Engineering. 162 p.

Ing, M.; Austin, S.; Lyons, R. 2005. Cover Zone Properties Influencing Acoustic Emission Due to Corrosion, Cement and Concrete Research 35(2): 284–295. http://dx.doi.org/10.1016/j.cemconres.2004.05.006

Kalicka, M. 2009. Acoustic Emission as a Monitoring Method in Prestressed Concrete Bridges Health Condition Evaluation, Journal of Acoustic Emission 27: 18–26.

Ohtsu, M. 1999. Estimation of Crack and Damage Progression in Concrete by Quantitative Acoustic Emission Analysis, Materials Evaluation 57(5): 521–525.

Ohtsu, M.; Okamoto, T.; Yuyama, S. 1998. Moment Tensor Analysis of Acoustic Emission for Cracking Mechanisms in Concrete, ACI Structural Journal 98(2): 87–95.

Shah, A. A.; Ribakov, Y. 2011. Recent Trends in Steel Fibered High-Strength Concrete, Materials & Design 32 (8–9): 4122 –4151. http://dx.doi.org/10.116/j.matdes.2011.03.030

Suzuki, T.; Ohtsu, M.; Shigeshi, M. 2007. Relative Damage Evaluation of Concrete in a Road Bridge by AE Rate-Process Analysis, Materials and Structures 40(2): 221–227. http://dx.doi.org/10.1617/s11527-006-9133-9

Świt, G. 2011. Predicting Failure Processes for Bridge – Type Structures Made of Prestressed Concrete Beams Using the Acustic Emission Method. Kielce. Wydawnictwo Politechniki Świętokrzyskiej. 179 p. PL ISSN 1897-2691

Świt, G. 2009. Diagnostic of Presterssed Concrete Structures by Means of Acoustic Emission, in Proc. of the 8th IEEE International Conference on Reliability, Maintainability and Safety (ICRM’S 2009). July 20–24, 2009, Chengdu, China. Institute of Electrical and Electronics Engineers (IEEE): 958–962. ISBN 9781424449057.

Tinkey, B. V.; Fowler, T. J.; Klingner, R. E. 2002. Nondestructive Testing of Prestressed Bridge Girders with Distributed Damage. Report No. FHWA/TX-03/1857-2. 106 p.

Trąmpczyński, W.; Świt, G.; Gołaski, L.; Goszczyńska, B.; Ono, K. 2012. Układ do diagnozowania stanu technicznego, betonowych konstrukcji zbrojonych i sprężonych [System to Diagnose the Technical Condition of Reinforced and Prestressed Concrete Constructions]. Polski Urząd Patentowy, Patent No. P 389391 [Patent No P 389391of the Republic of Poland, published 2012].

Woodward, R. J. 1999. BRIME- Bridge Management in Europe, Contract No.: RO-97-SC. 2000. 217 p.

Yuyama, S.; Okamoto, T.; Shigeishi, M.; Ohtsu, M. 1995. Quantitative Evaluation and Visualization of Cracking Process in Reinforced Concrete Specimen by Moment Tensor Analysis of Acoustic Emission, Journal Materials Evaluation 53(6): 751–756.

Downloads

Published

27.12.2012

How to Cite

Gołaski, L., Goszczyńska, B., Świt, G., & Trąmpczyński, W. (2012). System for the Global Monitoring and Evaluation of Damage Processes Developing Within Concrete Structures Under Service Loads. The Baltic Journal of Road and Bridge Engineering, 7(4), 237-245. https://doi.org/10.3846/bjrbe.2012.32