Resistance of Modified Hardened Cement Paste to Frost and De-Icing Salts

Gintautas Skripkiūnas, Džigita Nagrockienė, Giedrius Girskas, Eugenijus Janavičius


Concrete is widely used in the structures of bridges, flyovers, sidewalks and carriageways that are exposed to freeze-thaw cycles in wet conditions and are treated with de-icing salts. Tests were made to examine the effect of sodium silicate solution on the resistance of hardened cement paste to frost and de-icing salts. 5% sodium chloride, calcium chloride and manganese chloride solutions were used as de-icing salts. The deterioration of hardened cement paste was assessed by the changes in compressive strength, ultrasonic pulse velocity, specimen deformations and amount of scaled matter during cyclic freezing and thawing. Test results have revealed that hardened cement paste modified with sodium silicate solution is less subject to destruction when the surface of cement paste is treated with de-icing salt solutions under cyclic freeze-thaw conditions. The research has proved that sodium silicate solution increases the durability of concrete used in road structures.


concrete; hardened cement paste; frost resistance; salt solution; sodium silicate solution; durability

Full Text:



Asao, O. 2003. Nano-Fiber Technology Innovating World of Fiber. An Example of Research and Development. Nanomaterial Design by Polymer Blend Method, Journal of Engineering Materials 51(9): 42–45.

Beaudoin, J. J.; Dramé, H.; Raki, L.; Alizadeh, R. T. 2009. Formation and Properties of C-S-H-PEG Nano-Structures, Materials and Structures 42(7): 1003–1014.

Chen, J. J.; Thomas, J. J.; Taylor, H. F. W.; Jennings, H. M. 2004. Solubility and Structure of Calcium Silicate Hydrate, Cement and Concrete Research 34(9): 1499–1519.

Daukšys, M.; Skripkiūnas, G.; Janavičius, E. 2009. Complex Influence of Plasticizing Admixtures and Sodium Silicate Solution on Rheological Properties of Portland Cement Paste, Materials Science (Medžiagotyra) 15(4): 349–355.

Gartner, E. M.; Young, J. F.; Damidot, D. A.; Jawed, I. 2002. Hydration of Portland Cement, in Structure and Performance of Cements, 57–108. Spoon Press. ISBN 9780419233305.

Hommer, H.; Wutz, K. 2005. Recent Developments in Deflocculants for Castables, in The 9th Biennial Worldwide Congress on Refractories. November 8–11, 2005, Orlando, Florida, USA, 2–6.

Yoshioka, K.; Tazawa, E.; Kawai, K.; Enohata, T. 2002. Adsorption Characteristics of Superplasticizers on Cement Component Minerals, Cement and Concrete Research 32(10): 1507–1513.

Jana, D. 2004. Concrete, Construction, or Salt – which Causes Scaling? Part I: Importance of Air-Void System in Concrete, Concrete International 26(11): 31–38.

Jo, B.-W.; Kim, C.-H.; Tae, G.-H.; Park, J.-B. 2007. Characteristics of Cement Mortar with Nano-SiO2 Particles, Construction and Building Materials 21(6): 1351–1355.

Kiricsi, I.; Fudala, Á.; Méhn, D.; Kukovecz, Á.; Kónya, Z.; Hodos, M.; Horváth, E.; Urbán, M.; Kanyó, T.; Molnár, É.; Smajda, R. 2006. Tubular Inorganic Nanostructures, Current Applied Physics 6(2): 212–215.

Kuo, W.-Y.; Huang, J.-S; Lin, C.-H. 2006. Effects of Organo-Modified Montmorillonite on Strengths and Permeability of Cement Mortars, Cement and Concrete Research 36(5): 886–895.

Li, H.; Xiao, G.-H.; Ou, J.-P. 2004. A Study on Mechanical and Pressure-Sensitive Properties of Cement Mortar with Nanophase Materials, Cement and Concrete Research 34(3): 435–438.

Lotov, V. А. 2006. Nanodispersnye sistemy v tekhnologii stroitelnykh materialov i izdelij, Stroitelnye materialy 9: 80–82.

Nili, M.; Zaheri, M. 2011. Deicer Salt-Scaling Resistance of Non-Air-Entrained Roller-Compacted Concrete Pavements, Construction and Building Materials 25(4): 1671–1676.

Pundiene, I.; Goberis, S.; Stonys, R.; Antonovich, V. 2005. The Influence of Various Plastizing Elements on Hydration and Physical-Mechanical Properties of Refractory Concrete with Porous Fillers, in Proc. of the Conference “Refractory”. Castables, Prague, 86–95.

Raki, L.; Beaudoin, J.; Alizadeh, R.; Makar, J.; Sato, T. 2010. Cement and Concrete Nanoscience and Nanotechnology, Materials 3(2): 918–942.

Rimkus, A. 1999. Chloridų, naudojamų kelių dangų apledėjimui tirpinti, neigiamas poveikis. Inhibicija, Aplinkos inžinerija [Environmental Engineering] 7(2): 99–103.

Skripkiūnas, G.; Janavičius, E. 2010. Effect of Na2O·nSiO2 Nanodispersion on the Strength and Durability of Portland Cement Matrix, Medžiagotyra (Materials Science) 16(1): 86–93.

Skripkiūnas, G.; Grinys, A; Miškinis, K. 2009. Damping Properties of Concrete with Rubber Waste Additives, Medžiagotyra (Materials Science) 15(3): 266–272.

Sobolev, K.; Flores, I.; Hermosillo, R.; Torres-Martínez, L. M. 2008. Nanomaterials and Nanotechnology for High-Performance Cement Composites, in Proc. of ACI Session on “Nanotechnology of Concrete: Recent Developments and Future Perspectives”, vol. 254: 91–118. November 7, 2006, Denver, USA.

Storpirštytė, I; Kazlauskienė, A.; Ščupakas, D. 2004. Chloridų koncentracijos sniego dangoje intensyvaus eismo Lietuvos kelių pakelėse tyrimai, Journal of Environmental Engineering and Landscape Management 12(Suppl. 2): 60–66.

Valenza II, J. J.; Scherer, G. W. 2006. Mechanism for Salt Scaling, Journal of the American Ceramic Society 89(4): 1161–1179.

DOI: 10.3846/bjrbe.2012.36


  • There are currently no refbacks.

Copyright (c) 2012 Vilnius Gediminas Technical University (VGTU) Press Technika