Fatigue Strength of an Over One Hundred Year Old Railway Bridge

Authors

  • Paweł Grzegorz Kossakowski Dept of Strength of Materials and Concrete Structures, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

DOI:

https://doi.org/10.3846/bjrbe.2013.21

Keywords:

puddled steel, old steel, railway bridge, railway viaduct, fatigue, Finite Element Method (FEM) calculation

Abstract

The paper analyzes the fatigue strength of steel sampled from a railway bridge with a service life of over hundred years. The fatigue strength of the material was used to analyze the structural capacity of this railway bridge with such life expectancy operating under variable cyclic loading. The assessment was made using the requirements of the current design codes. It was found that the load-bearing capacity of structures made of materials similar to the analyzed steel may decrease significantly. In case of railway bridges and viaducts made of puddled steel with a service life exceeding 100 years, a significant reduction in the fatigue strength under normal stress is expected. Under shear stress, however, a significant excess of fatigue strength is predicted.

References

Åkesson, B. 2010. Fatigue Life of Riveted Steel Bridges. CRC Press, Taylor & Francis Group. 170 p. ISBN 978-0-415-87676-6.

Biliszczuk, J.; Hildebrand, M.; Rabiega, J.; Tadla, J. 2009. Najstarsze Mosty Żelazne w Polsce (1796–1827), Inżynieria i Budownictwo 9: 487–490.

Biliszczuk, J.; Hildebrand, M. 2007. Skarb Opatówka. Najstarszy Istniejący Most Żelazny w Polsce, Mosty 3: 59.

Biliszczuk, J.; Rabiega, J. 1997. Badania Materiału Pierwszego na Kontynencie Europejskim Mostu Żelaznego, Inżynieria i Budownictwo 6: 308–309.

Frýba, L. 1980. Estimation of Fatigue Life of Railway Bridges under Traffic Loads, Journal of Sound and Vibration 70(4): 527–541. http://dx.doi.org/10.1016/0022-460X(80)90322-3

Imam, B. M.; Righiniotis, T. D.; Chryssanthopoulos, M. K. 2008. Probabilistic Fatigue Evaluation of Riveted Railway Bridges, Journal of Bridge Engineering 13(3): 237–244. http://dx.doi.org/10.1061/(ASCE)1084-0702(2008)13:3(237)

Imam, B. M.; Righiniotis, T. D.; Chryssanthopoulos, M. K. 2007. Numerical Modelling of Riveted Railway Bridge Connections for Fatigue Evaluation, Engineering Structures 29(11): 3071–3081. http://dx.doi.org/10.1016/j.engstruct.2007.02.011

Juchnevičius, Ž.; Krenevičius, A. 2011. Fatigue Life Prediction for Cyclically Bent Threaded Connections, Mechanika 17(2): 113–119. http://dx.doi.org/10.5755/j01.mech.17.2.324

Kala, Z. 2008. Fuzzy Probability Analysis of the Fatigue Resistance of Steel Structural Members under Bending, Journal of Civil Engineering and Management 14(1): 67–72. http://dx.doi.org/10.3846/1392-3730.2008.14.67-72

Katz, P. 1928. Die älteste eiserne Straßenbrücke des europäischen Kontinents. Eine historich-technische Studie, TH Breslau.

Kocańda, S. 1985. Zmęczeniowe Pękanie Metali. Warszawa: Wydawnictwa Naukowo-Techniczne. 492 p. ISBN 83-204-0564-5.

Konat, Ł.; Pękalski, G.; Rabiega, J.; Sachadel, U. 2005. Material Tests of a Bridge from 1796 over the Strzegomka River in Łażany, Lower Silesia, Archives of Civil and Mechanical Engineering 5(4): 27–41.

Kossakowski, P. G. 2012a. Simulation of Ductile Fracture of S235JR Steel Using Computational Cells with Microstructurally-Based Length Scales, Journal of Theoretical and Applied Mechanics 50(2): 589–607.

Kossakowski, P. G. 2012b. Prediction of Ductile Fracture for S235JR Steel Using the Stress Modified Critical Strain and Gurson-Tvergaard-Needleman Models, Journal of Materials in Civil Engineering 24(12): 1492–1500. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000546

Krenevičius, A.; Leonavičius, M. 2008. Fatigue Life Prediction for Threaded Joint, Mechanika 3(71): 5–11.

Lesiuk, G.; Szata, M. 2010. Degradacja Mikrostruktur Elementów Konstrukcyjnych Pochodzących z Mostów Wzniesionych na Przełomie XIX i XX wieku, Zeszyty Naukowe WSOWL 1(155): 96–109.

Paeglitis, A.; Paeglitis, A.; Vitiņa, I.; Igaune, S. 2013. Study and Renovation of Historical Masonry Arch Bridge, The Baltic Journal of Road and Bridge Engineering 8(1): 32–39. http://dx.doi.org/10.3846/bjrbe.2013.05

Robinson, A. M.; Kapoor, A. 2009. Fatigue in Railway Infrastructure. CRC Press, Taylor & Francis Group. 114 p. ISBN 1-85573-740-X.

Stonkus, R.; Leonavičius, M.; Petraitis, G.; Stupak, S. 2011. High-Cyclic Failure Analysis of Welded Cast Iron Plates, Mechanika 17(2): 120–125. http://dx.doi.org/10.5755/j01.mech.17.2.325

Stonkus, R.; Leonavičius, M.; Krenevičius, A. 2009. Cracking Threshold of the Welded Joints Subjected to High-Cyclic Loading, Mechanika 2(76): 5–10.

Škaloud, M.; Zörnerová, M. 2005. The Fatigue Behaviour of the Breathing Webs of Steel Bridge Girders, Journal of Civil Engineering and Management 11(4): 323–336. http://dx.doi.org/10.1080/13923730.2005.9636363

Wang, C. S.; Hao, L. 2011. Effect of Cycle-Counting Methods on Fatigue Evaluation of Railway Bridges, Advanced Materials Research, vol. Advances in Structures 163–167: 3596‒3599. http://dx.doi.org/10.4028/www.scientific.net/AMR.163-167.3596

Wichtowski, B. 2009a. Ocena zmęczenia i doboru stali na konstrukcje stalowych mostów spawanych wg Eurokodu 3, Przegląd Spawalnictwa 12: 35–42.

Wichtowski, B. 2009b. Wytrzymałość zmęczeniowa stali starzonej według PN-EN 1993-1-9, in Proc. of the 55th Konferencja Naukowa KILiW PAN i KN PZITB. Ed. by Rusin, Z. September 20–25, 2009, Kielce-Krynica, Poland. Kielce: Wydawnictwo Politechniki Świętokrzyskiej, 181–188.

Žiliukas, A.; Gintalas, M. 2011. Dynamic Fracture Criteria Evaluation of Bridge Structural Steel, The Baltic Journal of Road and Bridge Engineering 6(2): 91–95. http://dx.doi.org/10.3846/bjrbe.2011.12

Downloads

Published

27.09.2013

How to Cite

Kossakowski, P. G. (2013). Fatigue Strength of an Over One Hundred Year Old Railway Bridge. The Baltic Journal of Road and Bridge Engineering, 8(3), 166-173. https://doi.org/10.3846/bjrbe.2013.21