Composite Deck in Two-Dimensional Modelling of Railway Truss Bridge

Authors

  • Wojciech Siekierski Dept of Bridges, Poznań University of Technology, ul. Piotrowo 5, 61-138 Poznań, Poland

DOI:

https://doi.org/10.3846/bjrbe.2014.15

Keywords:

railway truss bridge, truss girder, composite deck, joint action, test loading, two-dimensional modelling, numerical verification

Abstract

The paper shows a technique of two-dimensional modelling of railway truss bridge girders. The model accounts for joint action of girders and steel-concrete composite deck. Namely, influence of the deck on span flexural rigidity and internal force distribution in truss members are taken into account. The technique is capable of reflecting various arrangements of cross beam to truss flange connection as well as various concrete slab longitudinal rigidity (uncracked/cracked). Application example of test loaded bridge span is given. The accuracy of assessment of span flexural stiffness and internal forces distribution of presented procedure is similar to 3D beam/shell element model results accuracy. The presented technique is suitable for preliminary design of truss bridges and verification of other computational methods.

References

Ahlgrimm, J.; Lohrer, I. 2005. Erneuerung der Eisenbahnüberführung in Fulda-Horas über die Fulda [A New Rail Bridge Crosses the River Fulda in Fulda-Horas], Stahlbau 74(2): 114–120. http://dx.doi.org/10.1002/stab.200590002

Brencich, A.; Gambarotta, L. 2009. Assessment Procedure and Rehabilitation of Riveted Railway Girders: the Campasso Bridge, Engineering Structures 31(1): 224–239. http://dx.doi.org/10.1016/j.engstruct.2008.07.007

Caglayan, O.; Ozakgul, K.; Tezer, O. 2012. Assessment of Existing Steel Railway Bridges, Journal of Constructional Steel Research 69(1): 54–63. http://dx.doi.org/10.1016/j.jcsr.2011.08.001

Cheng, B.; Qian, O.; Sun, H. 2013a. Steel Truss Bridges with Welded Box-Section Members and Bowknot Integral Joints, Part I: Linear and Non-Linear Analysis, Journal of Constructional Steel Research 80: 465–474. http://dx.doi.org/10.1016/j.jcsr.2012.08.006

Cheng, B.; Qian, O.; Sun, H. 2013b. Steel Truss Bridges with Welded Box-Section Members and Bowknot Integral Joints, Part II: Minimum Weight Optimization, Journal of Constructional Steel Research 80: 475–482. http://dx.doi.org/10.1016/j.jcsr.2012.09.012

Dorrer, G. 2009. Die neue Eisenbahnbrücke über den Donaukanal und den Winterhafen in Wien [The New Railway Bridge Across the Donaukanal and the Winterhafen in Vienna], Stahlbau 78(2): 70–77. http://dx.doi.org/10.1002/stab.200910007

Hou, W.-Q.; Ye, M.-X. 2011. Design Methods of Headed Studs for Composite Decks of Through Steel Bridges in High-Speed Railway, Journal of Central South University of Technology 18: 946–952. http://dx.doi.org/10.1007/s11771-011-0785-4

Kalanta, S.; Atkočiūnas, J.; Ulitinas, T.; Grigusevičius, A. 2012. Optimization of Bridge Trusses Height and Bars Cross-Sections, The Baltic Journal of Road and Bridge Engineering 7(2): 112–119. http://dx.doi.org/10.3846/bjrbe.2012.16

Karlikowski, J. 1995. Projekt wzmocnienia mostu kratowego o małej sztywności [Design of Strengthening of Truss Bridge with Low Stiffness], in Proc. of the 9th International Conference on Metal Structures: vol. 3. Kraków, Poland, 1995, 261–273.

Kim, H.-H.; Shim, C. S. 2009. Experimental Investigation of Double Composite Twin-Girder Railway Bridges, Journal of Constructional Steel Research 65(6): 1355–1365. http://dx.doi.org/10.1016/j.jcsr.2009.02.004

Liao, M.; Okazaki, T. 2009. A Computational Study of the I-35 Bridge Collapse. Research Report No. CTS 09-29. Center for Transportation Studies, University of Minnesota. 95 p.

Machelski, C. 1998. Zastosowanie metody kinematycznej do wyznaczania funkcji wpływu sił wewnętrznych w układach prętowych [Application of Kinematics Method to Setting Influence Functions of Internal Forces in Bar-Element Structures], Inżynieria i Budownictwo 7(98): 372–375.

Pedro, J. O.; Reis, A. J. 2010. Nonlinear Analysis of Composite Steel-Concrete Cable-Stayed Bridges, Engineering Structures 32(9): 2702–2716. http://dx.doi.org/10.1016/j.engstruct.2010.04.041

Reintjes, K.; Gebert, G. 2006. Das Zügelgurt-Fachwerk der Muldebrücke Wurzen [The Truss–Stayed Structure of the Mulde Bridge Wurzen], Stahlbau 75(8): 613–623. http://dx.doi.org/10.1002/stab.200610063

Shim, C.-S.; Kim, D.-W.; Nhat, M. X. 2014. Performance of Stud Clusters on Precast Bridge Decks, The Baltic Journal of Road and Bridge Engineering 9(1): 43–51. http://dx.doi.org/10.3846/bjrbe.2014.06

Siekierski, W. 2010. Kolejowe przęsła kratownicowe z pasem sztywnym [Railway Truss Bridges with Rigid Flange], Inżynieria i Budownictwo 2: 97–99.

Xu, C.; Sugiura, K. 2014. Analytical Investigation on Failure Development of Group Studs Shear Connector in Push-Out Specimen under Biaxial Load Action, Engineering Failure Analysis 37: 75–85. http://dx.doi.org/10.1016/j.engfailanal.2013.11.010

Xu, X.; Liu, Y.; He, J. 2014. Study on Mechanical Behavior of Rubber-Sleeved Studs for Steel and Concrete Composite Structures, Construction and Building Materials 53: 533–546. http://dx.doi.org/10.1016/j.conbuildmat.2013.12.011

Xu, C.; Sugiura, K. 2013. Parametric Push-Out Analysis on Group Studs Shear Connector Under, Effect of Bending-induced Concrete Cracks, Journal of Constructional Steel Research 89: 86–97. http://dx.doi.org/10.1016/j.jcsr.2013.06.011

Xu, C.; Sugiura, K.; Wu, C.; Su, Q. 2012. Parametrical Static Analysis on Group Studs with Typical Push-Out Tests, Journal of Constructional Steel Research 72: 84–96. http://dx.doi.org/10.1016/j.jcsr.2011.10.029

Xue, D.; Liu, Y.; Yu, Z.; He, J. 2012. Static Behavior of Multi-Stud Shear Connectors for Steel-Concrete Composite Bridge, Journal of Constructional Steel Research 74: 1–7. http://dx.doi.org/10.1016/j.jcsr.2011.09.017

Zongyu, G. 2012. Zhengzhou Yellow River Road-Cum-Railway Bridge, China, Stahlbau 81(2): 151–155. http://dx.doi.org/10.1002/stab.201201522

Downloads

Published

27.06.2014

How to Cite

Siekierski, W. (2014). Composite Deck in Two-Dimensional Modelling of Railway Truss Bridge. The Baltic Journal of Road and Bridge Engineering, 9(2), 115-122. https://doi.org/10.3846/bjrbe.2014.15