Calculation of Viscous Energy Dissipation in Asphalt Pavements

Authors

  • Simon Pouget EIFFAGE Travaux Publics, 8 rue du dauphiné 69960 Corbas, France
  • Cédric Sauzéat Dept of Civil Engineering and Building, University of Lyon, ENTPE (FRE CNRS 3237), 3 rue Maurice Audin 69518 Vaulx-en-Velin, France
  • Hervé Di Benedetto Dept of Civil Engineering and Building, University of Lyon, ENTPE (FRE CNRS 3237), 3 rue Maurice Audin 69518 Vaulx-en-Velin, France
  • François Olard EIFFAGE Travaux Publics, 8 rue du dauphiné 69960 Corbas, France

DOI:

https://doi.org/10.3846/bjrbe.2014.16

Keywords:

pavement, energy dissipation, viscous behaviour, viscoelasticity, fuel consumption, Finite Element Model (FEM)

Abstract

This paper presents a method to evaluate the energy dissipation in the pavement, induced by the viscous behaviour of bituminous constituents. The introduced method starts from the experimental characterization of each material and goes to the determination of stress and strain field, as well as viscous dissipated energy, in a pavement structure under a rolling wheel. A classical French pavement structure is considered as an application example. First, the behaviour of bituminous materials is characterized with advanced complex modulus tests. Second, a rheological model is used to describe the linear visco-elastic behaviour of bituminous materials. This model was previously developed at the Civil Engineering and Buildings Department of University of Lyon/ENTPE and has already shown its ability to describe completely and precisely the observed behaviour of bituminous materials. In order to make calculation the Finite Element software is then used in a third step, with the previous material model. Detailed hypotheses to perform the simulation of a rolling wheel on the pavement structure are explained. Results of the simulation are presented in terms of dissipated energy inside the pavement for a 40 ton truck. To give an order of magnitude, an estimation of the fuel consumption excess is given. Different temperature and vehicle speeds are considered. The Time Temperature Superposition Principle has been applied to estimate the dissipated energy at any temperature and vehicle speed. The simulation results show that energy dissipation in bituminous pavement due to the rolling weight of the considered 40 ton truck may induce a fuel consumption excess of a few percent for very unfavourable climatic conditions.

References

Baaj, H.; Di Benedetto, H.; Chaverot, P. 2005. Effect of Binder Characteristics on Fatigue of Asphalt Pavement Using an Intrinsic Damage Approach, Road Materials and Pavement Design 6(2): 147−174. http://dx.doi.org/10.1080/14680629.2005.9690003

Beuving, E.; De Jonghe, T.; Goos, D.; Lindahl, T.; Stawiarski, A. 2004. Fuel Efficiency of Road Pavements, in The 3rd Eurasphalt and Eurobitume Congress. May 12−14, 2004, Vienna. ISBN 90-802884-4-6.

Christophe, Th.; Delanne, Y.; Serfass, J. P. 1993. Les Caractéristiques de Surface − Résistance au Roulement, Confort Vibratoire et Caractéristiques de Surface, Revue Générale des Routes et des Aérodromes 708: 13−7. [in French]

Chupin, O.; Piau, J-M.; Chabot, A. 2010. Effect of Bituminous Pavement Structures on the Rolling Resistance, in the 11th International Conference On Asphalt Pavements (ISAP). August 1−6, 2010, Nagoya, Aichi, Japan.

Delaporte, B.; Di Benedetto, H.; Chaverot, P.; Gauthier, G. 2009. Linear Viscoelastic Properties of Bituminous Materials Including New Products Made with Ultrafine Particles, Road Materials and Pavement Design 10(1): 7−38. http://dx.doi.org/10.1080/14680629.2009.9690180

Di Benedetto, H.; Nguyen, Q. T.; Sauzeat, C. 2011. Nonlinearity, Heating, Fatigue and Thixotropy during Cyclic Loading of Asphalt Mixtures, Road Materials and Pavement Design 12(1): 129−158. http://dx.doi.org/10.1080/14680629.2011.9690356

Di Benedetto, H.; Sauzéat, C.; Sohm, J. 2009. Stiffness of Bituminous Mixtures Using Ultrasonic Waves Propagation, Road Materials and Pavement Design 10(4): 789–814. http://dx.doi.org/10.1080/14680629.2009.9690227

Di Benedetto, H.; Neifar, M.; Sauzeat, C.; Olard, F. 2007. Three-Dimensional Thermo-Viscoplastic Behaviour of Bituminous Materials: the DBN Model, Road Materials and Pavement Design 8(2): 285−315. http://dx.doi.org/10.1080/14680629.2007.9690076

Di Benedetto, H.; De la Roche, C.; Baaj, H.; Pronk, A.; Lundström, R. 2004. Fatigue of Bituminous Mixtures, Materials and Structures 37(3): 202−216. http://dx.doi.org/10.1007/BF02481620

Du Plessis, H.; Visser, A.; Curtayne, P. 1990. Fuel Consumption of Vehicles as Affected by Road-Surface Characteristics, in Surface Characteristics of Roadways: International Research and Technologies. Ed. by Meyer, W. E.; Reichert, J. 480−496. http://dx.doi.org/10.1520/STP23383S

Ferry, J. D. 1980. Viscoelastic Properties of Polymers. 3rd edition. John & Sons. ISBN 9780471048947. 672 p.

Ihs, A.; Magnusson, G. 2000. The Significance of Various Road Surface Properties for Traffic and Surroundings. Project No. 80371. 29 p.

Laganier, R.; Lucas, J. 1990. The Influence of Pavement Evenness and Macrotexture on Fuel Consumption, Surface Characteristics of Roadways: International Research and Technologies 454−459.

Lundström, R.; Di Benedetto, H.; Isacsson, U. 2004. Influence of Asphalt Mixture Stiffness on Fatigue Failure, Journal of Materials in Civil Engineering 16(6): 516−525. http://dx.doi.org/10.1061/(ASCE)0899-1561(2004)16:6(516)

Mangiafico, S.; Di Benedetto, H.; Sauzéat, C.; Olard, F.; Pouget, S.; Planque, L. 2013. Influence of Reclaimed Asphalt Pavement Content on Complex Modulus of Asphalt Binder Blends and Corresponding Mixes: Experimental Results and Modelling, Road Materials and Pavement Design 14 (Suppl. 1, Special Issue: EATA 2013): 132–148. http://dx.doi.org/10.1080/14680629.2013.774751

Neifar, M.; Di Benedetto, H. 2001. Thermo-Viscoplastic Law for Bituminous Mixes, Road Materials and Pavement Design 2(1): 71−95. http://dx.doi.org/10.1080/14680629.2001.9689894

Nguyen, Q. T.; Di Benedetto, H.; Sauzéat, C. 2012. Determination of Thermal Properties of Asphalt Mixtures as Another Output from Cyclic Tension–Compression Test, Road Materials and Pavement Design 13(1): 85–103. http://dx.doi.org/10.1080/14680629.2011.644082

Nguyen, H. M.; Pouget, S.; Di Benedetto, H.; Sauzéat, C. 2009. Generalization of the Time-Temperature Superposition Principle for Bituminous Mixtures: Experimentation and Modeling, European Journal of Environmental and Civil Engineering 13(9): 1095−1107. http://dx.doi.org/10.1080/19648189.2009.9693176

Olard, F.; Di Benedetto, H. 2005. The DBN Model: a Thermo-Visco-Elasto-Plastic Approach for Pavement Behavior Modeling, Journal of the Association of Asphalt Paving Technologists 74: 791−828.

Pouget, S.; Loup, L. 2013. Thermo-Mechanical Behaviour of Mixtures Containing Bio-Binders, Road Material and Pavement Design 14 (Suppl. 1, Special Issue: EATA 2013): 212−226. http://dx.doi.org/10.1080/14680629.2013.774758

Pouget, S.; Sauzéat, C.; Di Benedetto, H.; Olard, F. 2012a. Modeling of Viscous Bituminous Wearing Course Materials on Orthotropic Steel Deck, Materials and Structures 45(7): 1115−1125. http://dx.doi.org/10.1617/s11527-011-9820-z

Pouget, S.; Sauzéat, C.; Di Benedetto, H.; Olard, F. 2012b. Viscous Energy Dissipation in Asphalt Pavement Structures and Implication on Vehicle Fuel Consumption, Journal of Materials in Civil Engineering 24(5): 568−576. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000414

Pouget, S.; Sauzéat, C.; Di Benedetto, H.; Olard, F. 2012c. Effect of Vehicle Speed on Millau Viaduct Response, ASTM International Journal of Testing and Evaluation 40(7): 1–7. http://dx.doi.org/10.1520/JTE20120127

Pouget, S.; Sauzéat, C.; Di Benedetto, H.; Olard, F. 2010a. From the Behavior of Constituent Materials to the Calculation and Design of Orthotropic Bridge Structures, Road Materials and Pavement Design 11: 111−144. http://dx.doi.org/10.1080/14680629.2010.9690329

Pouget, S.; Sauzéat, C.; Di Benedetto, H.; Olard, F. 2010b. Numerical Simulation of the Five-Point Bending Test Designed to Study Bituminous Wearing Courses on Orthotropic Steel Bridge, Materials and Structures 43(3): 319−330. http://dx.doi.org/10.1617/s11527-009-9491-1

Raab, C.; Abd El Halim, O.; Partl, M. N. 2013. Utilisation of Artificial Neural Network for the Analysis of Interlayer Shear Properties, The Baltic Journal of Road and Bridge Engineering 8(2): 107−116. http://dx.doi.org/10.3846/bjrbe.2013.14

Sandberg, U. 1990. Road Macro- and Megatexture Influence on Fuel Consumption, Surface Characteristics of Roadways: International Research and Technologies 460−479. http://dx.doi.org/10.1520/STP23382S

Tiouajni, S.; Di Benedetto, H.; Sauzéat, C.; Pouget, S. 2011. Approximation of Linear Viscoelastic Model by Generalized Kelvin Voigt or Generalized Maxwell Models: Application to Bituminous Materials in the 3 Dimensional Case, Road Materials and Pavement Design 12(4): 897–930. http://dx.doi.org/10.1080/14680629.2011.9713899

Williams, A. 1981. Aspects of Tyre/Road Properties Relatable to Driver Comfort and Safety, Highways and Public Works 1854: 10−13.

Zaniewski, J. 1983. Fuel Consumption Related to Roadway Characteristics, Transportation Research Record 901: 18−29.

Zaniewski, J. P.; Moser, B.; De Morais, P. J.; Kaeschagen, R. L. 1979. Fuel Consumption Related to Vehicle Type and Road Conditions, Transportation Research Record 702: 328−334.

Downloads

Published

27.06.2014

How to Cite

Pouget, S., Sauzéat, C., Di Benedetto, H., & Olard, F. (2014). Calculation of Viscous Energy Dissipation in Asphalt Pavements. The Baltic Journal of Road and Bridge Engineering, 9(2), 123-130. https://doi.org/10.3846/bjrbe.2014.16