Investigation of Geofiltration Properties of Clay Soils

Petras Klizas, Saulius Gadeikis, Arnoldas Norkus, Daiva Žilionienė, Kastytis Dundulis


Filtration properties of clay (Kuksa mine, Lithuania) were investigated and analysis of the results was done. Investigations were carried out using a permeameter with a varying hydraulic head. A potential dependence of the clay hydraulic conductivity values on the filtration process duration as well as hydraulic gradient and compaction range were determined. The importance of the clay structural peculiarities, carrying out filtrations through clay paste, natural structure and compacted samples was evaluated. It was determined that the clay hydraulic conductivity values varied greatly only at the beginning of the filtration while, later on, when continuing the filtration for a few days, the change reduced. This shows that, during the filtration, there are structural clay-forming unit rearrangements that are taking place. The filtration investigation of the clay paste studies show that there exist clay structural links different changes the filtration capacity of clay. The determined varying behaviour of the clay and the clay paste in the course of filtration as well as under various loads must be evaluated in the design and reconstruction of roads with subgrade of the clayey soils.


clay; clay paste; filtration; hydraulic conductivity value; hydraulic gradient; hydraulic head; laboratory investigations; permeameter

Full Text:



Dondi, M.; Principi, P.; Raimondo, M.; Zanarini, G. 2003. Water Vapour Permeability of Clay Bricks, Construction and Building Materials 17(4): 253–258.

Ebina, T.; Minja, R. J. A.; Nagase, T.; Onodera, Y.; Chatterjee, A. 2004. Correlation of Hydraulic Conductivity of Clay-Sand Compacted Specimens with Clay Property, Applied Clay Science 26(1–4): 3–12.

Enssle, C. Ph.; Cruchaudet, M.; Croise, J.; Brommundt, J. 2011. Determination of the Permeability of the Callovo-Oxfordian Clay at the Metre to Decametre Scale, Physics and Chemistry of the Earth 36(17–18): 1669–1678.

Gadeikis, S.; Dundulis, K.; Žaržojus, G.; Gadeikytė, S.; Klizas, P.; Urbaitis, D.; Gribulis, D. 2012. Inžinerinių barjerų izoliacinių molio gruntų sluoksnių geotechniniai tyrimai, Mokslas Gamtos mokslų fakultete (7): 117–128.

Hamdi, N.; Srasra, E. 2008. Filtration Properties of Two Tunisian Clays Suspensions: Effect of the Nature of Clay, Desalination 220(1–3): 194−199.

Jobmann, M.; Wilsnack, Th.; Voigt, H. D. 2010. Investigation of Damage-Induced Permeability of Opalinus Clay, International Journal of Rock Mechanics and Mining Sciences 47(2): 279–285.

Klizas, P. 2014. Geofiltration Studies of Clay at the Future Radioactive Waste Repository for Ignalina Nuclear Power Plant, Journal of Environmental Engineering and Landscape iFirst: 1–7.

Klizas, P. J.; Miksys, R. B. A. 1984. Laboratornye issledovanija vodopronicaemosti gornyh porod Severnoj Litvy. Nauch. tr. vyssh. ucheb. zav. LitSSR. Geologija, 71−80.

Nammar, N.; Rosanne, M.; Prunet-Foch, B.; Thovert, J. F.; Tevissen, E.; Adler, P. M. 2001. Transport Properties of Compact Clays, Journal of Colloid and Interface Science 240(2): 498–508.

Oradovskaja, A. E. 1983. Gidrogeologicheskoe znachenie fil’tracii vody v glinistyh porodah. Moskva, VSEGINGEO 152(1):14–19.

Shafiee, A. 2008. Permeability of Compacted Granule-Clay Mixtures, Engineering Geology 97(3–4): 199–208.

Shao, H.; Sonnke, J.; Morel, J.; Krug, S. 2011. In Situ Determination of Anizotropic Permeability of Clay, Physics and Chemistry of Earth 36(17–18): 1688–1692.

DOI: 10.3846/bjrbe.2014.29


  • There are currently no refbacks.

Copyright (c) 2014 Vilnius Gediminas Technical University (VGTU) Press Technika