Relationship Between Deformation Moduli Obtained Using Light Falling Weight Deflectometer and Static Plate Test on Various Types of Soil

Authors

  • Karel Pospisil CDV – Transport Research Centre, Lisenska 33a, 636 00 Brno, Czech Republic
  • Petr Zednik CDV – Transport Research Centre, Lisenska 33a, 636 00 Brno, Czech Republic
  • Josef Stryk CDV – Transport Research Centre, Lisenska 33a, 636 00 Brno, Czech Republic

DOI:

https://doi.org/10.3846/bjrbe.2014.31

Keywords:

deformation moduli, soil moduli, Falling Weight Deflectometer (FWD), Light Falling Weight Deflectometer (LFWD), static plate tests, moduli relationship

Abstract

There is increasing effort to optimize test methods for evaluation of subgrade. It takes effect in aspiration in replacement of static plate loading test by other faster test methods. One of them is the use of Light Falling Weight Deflectometer. In many countries in Europe both static and dynamic plate tests are standardized. The presented paper introduces results of the research project dealing with the sensitivity of the relationship between static modulus and modulus obtained from the Light Falling Weight Deflectometer on specific types of soil. It is shown that there are significant differences in relationship between moduli values obtained using both methods on different types of soil.

References

Adam, C.; Adam, D.; Kopf, F.; Paulmichl, I. 2009. Computational Validation of Static and Dynamic Plate Load Tests with Respect to Specific European Standards, Acta Geotechnica 4(1): 35–55. http://dx.doi.org/10.1007/s11440-008-0081-0

Ahmed, A. T.; Khalid, H. A. 2011. Backcalculation Models to Evaluate Light Falling Weight Deflectometer Moduli of Road Foundation Layer Made with Bottom Ash Waste, Transportation Research Record 2227: 63–70. http://dx.doi.org/10.3141/2227-07

Alshibli, K. A.; Abu-Farsakh, M.; Seyman, E. 2005. Laboratory Evaluation of the Geogauge and Light Failing Weight Deflectometer as Construction Control Tools, Journal of Materials in Civil Engineering 17(5): 560–569. http://dx.doi.org/10.1061/(ASCE)0899-1561(2005)17:5(560)

Asli, C.; Feng, Z. Q.; Porcher, G.; Rincent, J. J. 2012. Back-Calculation of Elastic Modulus of Soil and Subgrade from Portable Falling Weight Deflectometer Measurements, Engineering Structures 34: 1–7. http://dx.doi.org/10.1016/j.engstruct.2011.10.011

Benedetto, A.; D‘Amico, F.; Tosti, F. 2014. Improving Safety of Runway Overrun through the Correct Numerical Evaluation of Rutting in Cleared and Graded Areas, Safety Science 62: 326–338. http://dx.doi.org/10.1016/j.ssci.2013.09.008

Benedetto, A.; Tosti, F.; Di Domenico, L. 2012. Elliptic Model for Prediction of Deflections Induced by a Light Falling Weight Deflectometer, Journal of Terramechanics 49(1): 1–12. http://dx.doi.org/10.1016/j.jterra.2011.10.003

Floss, R. 1973. Bodenmechanische Gesichtspunkte bei Auswahl und Dimensionierung von Straßenbefestigungen [Soil Mechanic Viewpoint on Choosing and Design Pavement Stabilisation], Straße und Autobahn 24(1): 17–26.

Guzina, B. B.; Fata, S. N. 2002. A Study of Ground–Structure Interaction in Dynamic Plate Load Testing, International Journal for Numerical and Analytical Methods in Geomechanics 26(12): 1147–1166. http://dx.doi.org/10.1002/nag.239

Ji, R.; Siddiki, N.; Nantung, T.; Kim, D. 2014. Evaluation of Resilient Modulus of Subgrade and Base Materials in Indiana and its Implementation in MEPDG, Scientific World Journal, Article ID 372838. http://dx.doi.org/10.1155/2014/372838

Khattak, M.; Mohammad, L.; Yuan, F.; Abadie, C. 2012. Variability of In-Situ HMA Volumetric and Mechanistic Characteristics Using Non-Destructive Test (NDT): Case Study, International Journal of Pavement Engineering 13(2): 110–125. http://dx.doi.org/10.1080/10298436.2011.597858

Lacey, D.; Look, B.; Williams, D. 2013. Assessment of Relationship between Insitu Modulus Derived from DCP and LFWD Testing, in Proc. of 5th International Young Geotechnical Engineers‘ Conference (iYGEC 2013), vol. 2. Ed. by Cui, Y. J.; Emeriault, F.; Cuira, F.; Ghabezloo, S.; Pereira, J. M.; Reboul, M.; Ravel, H.; Tang, A. M. August 31– September 1, France, Marne la Vallee, 379–382.

Liu, J.; Zhang, Y.; Luo, Y.; Li, Z.; Jiang, L. 2006. A Test Research on Relativity Between Dynamic and Static Elastic Modulus of Clay, in Proc. of 2nd International Conference on Environmental and Engineering Geophysics: Geophysical Solutions for Environment and Engineering, vol. 1. Ed. by Xu, Y.; Xia, J.; Chen, C. June 4–9, 2006, Wuhan, Peoples R China. Mounmouth Junction: Science Press USA Inc, 70–73. WOS:000238999600011

Mashinsky, E. I. 2003. Differences between Static and Dynamic Elastic Moduli of Rocks: Physical Causes, Geologiya i Geofizika 44(9): 953–959. WOS:000186191900010

Muller, W. B.; Roberts, J. 2013. Revised Approach to Assessing Traffic Speed Deflectometer Data and Field Validation of Deflection Bowl Predictions, International Journal of Pavement Engineering 14(4): 388–402. http://dx.doi.org/10.1080/10298436.2012.715646

Oh, J. H.; Fernando, E. G.; Lee, S. I.; Holzschuher, C. 2012. Correlation of Asphalt Concrete Layer Moduli Determined from Laboratory and Nondestructive Field Tests, Journal of Transportation Engineering 138(3): 361–370. http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000316

Pospisil, K. 2005. Die Vorhersehbarkeit des Verformungsmoduls [Modulus of Deformation Predictability], Strasse und Autobahn 56(6): 313–318.

Salour, F.; Erlingsson, S. 2013. Investigation of a Pavement Structural Behaviour during Spring Thaw Using Falling Weight Deflectometer, Road Materials and Pavement Design 14(1): 141–158. http://dx.doi.org/10.1080/14680629.2012.754600

Sulewska, M. J. 2012. The Control of Soil Compaction Degree by Means of LFWD, The Baltic Journal of Road and Bridge Engineering 7(1): 36‒41. http://dx.doi.org/10.3846/bjrbe.2012.05

Shin, E. C. 2012a. Freezing and Bearing Capacity Characteristics of Road Foundations under Temperature Condition, Journal of the Korean Geotechnical Society 28(3): 5–14. http://dx.doi.org/10.7843/kgs.2012.28.3.5

Shin, E. C. 2012b. Freezing and Deflection Characteristics of Flexible Pavement Structure Using Frost Model Test, Journal of the Korean Geosynthetics Society 11(3): 27–35. http://dx.doi.org/10.12814/jkgss.2012.11.3.027

Tompai, Z. 2008. Conversion between Static and Dynamic Load Bearing Capacity Moduli and Introduction of Dynamic Target Values, Civil Engineering 52(2): 97–102. http://dx.doi.org/10.3311/pp.ci.2008-2.06

Vennapusa, P. K. R.; White, D. J.; Schram, S. 2013. Roller-Integrated Compaction Monitoring for Hot-Mix Asphalt Overlay Construction, Journal of Transportation Engineering 139(12): 1164–1173. http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000602

Vennapusa, P. K. R.; White, D. J.; Siekmeier, J.; Embacher, R. A. 2012. In Situ Mechanistic Characterisations of Granular

Pavement Foundation Layers, International Journal of Pavement Engineering 13(1): 52–67. http://dx.doi.org/10.1080/10298436.2011.564281

Vennapusa, P. K. R.; White, D. J. 2009. Comparison of Light Weight Deflectometer Measurements for Pavement Foundation Materials, Geotechnical Testing Journal 32(3): 239–251. http://dx.doi.org/10.1520/GTJ101704

Downloads

Published

27.12.2014

How to Cite

Pospisil, K., Zednik, P., & Stryk, J. (2014). Relationship Between Deformation Moduli Obtained Using Light Falling Weight Deflectometer and Static Plate Test on Various Types of Soil. The Baltic Journal of Road and Bridge Engineering, 9(4), 251-259. https://doi.org/10.3846/bjrbe.2014.31