Experimental Study for Determination of Collar Dimensions Around Bridge Pier

Authors

  • Afshin Jahangirzadeh Dept of Civil Engineering, University of Malaya, Jalan Universiti str., 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
  • Shatirah Akib Dept of Civil Engineering, University of Malaya, Jalan Universiti str., 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.3846/bjrbe.2015.11

Keywords:

bridge pier model, scour, rectangular collar, collar width, downstream collar length, upstream collar length

Abstract

The shape and size of a collar is important to maximize its effect as a scour countermeasure. Current research shows that the depth of the scour hole is decreased by using rectangular collars around circular piers. This study determined the approximate optimum dimensions for rectangular collars to minimize the temporal trend of scouring around a pier model. Effects of different sizes of rectangular collars on a model pier were investigated both at the upstream and downstream of the flume. It was observed that irrespective of the rectangular collar dimensions the upstream and the downstream were estimated to be 0.86 and 1.42, respectively. The optimum collar width was estimated to be 2.8 times the diameter of the pier. By using this optimized collar dimension, the non-dimensional depth of scour reached a min value of 0.034 at 72 h. The reduction percentage of the scour depth reached 98% at 72 h.

References

Akib, S.; Fayyadh, M. M.; Othman, I. 2011. Structural Behaviour of a Skewed Integral Bridge Affected by Different Parameters, The Baltic Journal of Road and Bridge Engineering 6(2): 107– 114. http://dx.doi.org/10.3846/bjrbe.2011.15

Akib, S.; Jahangirzadeh, A.; Basser, H. 2014. Local Scour around Complex Pier Groups And Combined Piles at Semi-Integral Bridge, Journal of Hydrology Hydromechanics 62(2): 108–116. http://dx.doi.org/10.2478/johh-2014-0015

Baker, C. J. 1980. Theoretical Approach to Prediction of Local Scour around Bridge Piers, Journal of Hydraulic Research 18(1): 1–12. http://dx.doi.org/10.1080/00221688009499564

Chiew, Y. M. 1992. Scour Protection at Bridge Piers, Journal of Hydraulic Engineering 118(9): 1260–1269. http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1260)

Chiew, Y. M.; Melville, B. W. 1987. Local Scour around Bridge Piers, Journal of Hydraulic Research 25(1): 15–26. http://dx.doi.org/10.1080/00221688709499285

Dargahi, B. 1990. Controlling Mechanism of Local Scouring, Journal of Hydraulic Engineering 116(10): 1197–1214. http://dx.doi.org/10.1061/(ASCE)0733-9429(1990)116:10(1197)

Deng, L.; Cai, C. 2010. Bridge Scour: Prediction, Modeling, Monitoring, and Countermeasures-Review, Practice Periodical on Structural Design and Construction 15(2): 125–134. http://dx.doi.org/10.1061/(ASCE)SC.1943-5576.0000041

Ettema, R. 1980. Scour at Bridge Piers. Research Report No. 216. Dept of Civil Engineering, University of Auckland, New Zealand.

Gaudio, R.; Tafarojnoruz, A.; Calomino, F. 2012. Combined Flow-Altering Countermeasures against Bridge Pier Scour, Journal of Hydraulic Research 50(1): 35–43. http://dx.doi.org/10.1080/00221686.2011.649548

Jahangirzadeh, A.; Basser, H.; Akib, S.; Karami, H.; Naji, S.; Shamshirband, S. 2014. Experimental and Numerical Investigation of the Effect of Different Shapes of Collars on the Reduction of Scour Around a Single Bridge Pier, PloS ONE 9(6): 1–11. http://dx.doi.org/10.1371/journal.pone.0098592

Khosronejad, A.; Kang, S.; Sotiropoulos, F. 2012. Experimental and Computational Investigation of Local Scour Around Bridge Piers, Advances in Water Resources 37: 73–85. http://dx.doi.org/10.1016/j.advwatres.2011.09.013

Kumar, V.; Ranga Raju, K. G.; Vittal, N. 1999. Reduction of Local Scour Around Bridge Piers Using Slots and Collars, Journal of Hydraulic Engineering 125(12) 1302–1305. http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1302)

Laursen, E. M.; Toch, A. 1956. Scour around Bridge Piers and Abutments. Bulletin No 4, Iowa Highways Research Board, Ames, Iowa.

Link, O.; Pfleger, F.; Zanke, U. 2008. Characteristics of Developing Scour-Holes at a Sand-Embedded Cylinder, International Journal of Sediment Research 23(3): 258–266. http://dx.doi.org/10.1016/S1001-6279(08)60023-2

Mashahir, M. B.; Zarrati, A. R.; Mokallaf, E. 2010. Application of Riprap and Collar to Prevent Scouring Around Rectangular Bridge Piers, Journal of Hydraulic Engineering 136(3): 183–141. http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000145

Melville, B. W. 1997. Pier and Abutment Scour – an Integrated Approach, Journal of Hydraulic Engineering 123(2): 125–136. http://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:2(125)

Meyer-Peter, E.; Muller, R. 1984. Formulas for Bed-Load Transport, in Proc. of the 2nd Meeting of the International Association Hydraulic Structure Research, 1984, Stockholm, Sweden.

Moncada-M, A. T.; Aguirre-Pe, J.; Bolivar, J. C.; Flores, E. J. 2009. Scour Protection of Circular Bridge Piers with Collars and Slots, Journal of Hydraulic Research 47(1): 119–126. http://dx.doi.org/10.3826/jhr.2009.3244

Motamedi, A.; Afzalimehr, H.; Singh, V. P. 2010. Evaluation of a Novel Approach to Determine the Critical Shields Stress, Journal of Hydrologic Engineering 15(11): 892–900. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000266

Neill, C. R. 1973. Guide to Bridge Hydraulics. Toronto: University of Toronto press. 191 p. ISBN 0802019617.

Raudkivi, A. J. 1998. Loose Boundary Hydraulics. A. A. Balkema, Rotterdam, The Netherlands. 512 p. ISBN 9789054104483.

Raudkivi, A.; Ettema, R. 1983. Clear-Water Scour at Cylindrical Piers, Journal of Hydraulic Engineering 109(3): 338‒350. http://dx.doi.org/10.1061/(ASCE)0733-9429(1983)109:3(338)

Sheppard, D. M.; Miller, Jr. W. 2006. Live-Bed Local Pier Scour Experiments, Journal of Hydraulic Engineering 132(7): 635–642. http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132:7(635)

Shirole, A. M.; Holt, R. C. 1991. Planning for a Comprehensive Bridge Safety Assurance Program, in Proc. of the 3rd Bridge Engineering Conference. 10–13 March 1991, Denver, Colorado, USA.

Tafarojnoruz, A.; Gaudio, R.; Calomino, F. 2012. Bridge Pier Scour Mitigation under Steady and Unsteady Flow Conditions, Acta Geophysica 60(4): 1076–1097. http://dx.doi.org/10.2478/s11600-012-0040-x

Tafarojnoruz, A.; Gaudio, R.; Dey, S. 2010. Flow-Altering Countermeasures against Scour at Bridge Piers: a Review, Journal of Hydraulic Research 48(4): 441–452. http://dx.doi.org/10.1080/00221686.2010.491645

Thomas, Z. 1967. An Interesting Hydraulic Effect Occurring at Local Scour, in Proc. of the 12th International Association for Hydraulic Research Congress. 11–14 September 1967, Fort Collins, Colorado, USA.

Zarrati, A. R.; Nazariha, M.; Mashahir, M. B. 2006. Reduction of Local Scour in the Vicinity of Bridge Pier Group Using Collars and Riprap, Journal of Hydraulic Engineering 132(2): 154–162. http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132:2(154)

Zarrati, A. R.; Gholami, H.; Mashahir, M. B. 2004. Application of Collar to Control Scouring Around Rectangular Bridge Piers, Journal of Hydraulic Research 42(1): 97–103. http://dx.doi.org/10.1080/00221686.2004.9641188

Zarrati, A. R.; Chamani, M. R.; Shafaei, A.; Latifi, M. 2010. Scour Countermeasure for Cylindrical Piers Using Riprap and Combination of Collar and Riprap, International Journal of Sediment Research 25(3): 313–321. http://dx.doi.org/10.1016/S1001-6279(10)60048-0

Downloads

Published

27.03.2015

How to Cite

Jahangirzadeh, A., & Akib, S. (2015). Experimental Study for Determination of Collar Dimensions Around Bridge Pier. The Baltic Journal of Road and Bridge Engineering, 10(1), 89-96. https://doi.org/10.3846/bjrbe.2015.11