Analysis of Rigid Flange of Bridge Truss Girder

Wojciech Siekierski

Abstract


Contemporary bridge truss girders have usually “W” bracing and spacing of cross beams smaller than spacing of truss nodes. The flange at deck level is loaded at its nodes and between them. It acts as a truss member and as a beam simultaneously. An analysis of the rigid flange in two stages is presented. The first stage of the analysis is aimed at computation of axial forces. Equivalent loading applied at truss nodes and truss member hinged connections are assumed. Ritter’s method is used to compute axial forces in rigid flange members. The second stage of analysis is aimed at computation of bending moments. A model of the rigid flange as a continuous beam on elastic supports with imposed settlements is assumed. In this stage additional model of truss girder as simply supported beam of equivalent moment of inertia is considered as well. Working example of application of presented analysis is given. Two computational models of rigid flange are analysed: model of rigid flange as member of truss girder and model of isolated rigid flange as continuous beam. Data recorded during test loading of two truss bridge spans are used for verification. Modelling isolated rigid flange as continuous beam and classical modelling of truss girder as plane frame provide similar accuracy of assessment of internal forces and vertical displacements distribution in rigid flange.

Keywords:

bridge truss girder; truss rigid flange; braced beam; boundary conditions; test loading

Full Text:

PDF

References


Ahlgrimm, J.; Lohrer, I. 2005. Erneuerung der Eisenbahnüberführung in Fulda-Horas über die Fulda [A New Rail Bridge Crosses the River Fulda in Fulda-Horas], Stahlbau 74(2): 114–120. http://dx.doi.org/10.1002/stab.200590002

Alkhafaji, T.; Sobala, D.; Zobel, H. 1998. Naturalne oddziaływania termiczne w zespolonym moście kratowym [Natural Thermal Phenomena in a Composite Truss Bridge] in Proc. of Konferencja Naukowo-Techniczna „Mosty zespolone”, 7–9 May, 1998, Kraków, 11–20.

Caglayan, O.; Ozakgul, K.; Tezer, O. 2012. Assessment of Existing Steel Railway Bridges, Journal of Constructional Steel Research 69(1): 54–63. http://dx.doi.org/10.1016/j.jcsr.2011.08.001

Gesualdo, F. A. R.; Cunha, T. A.; Rezende, R. B. 2014. Numerical and Experimental Evaluation of a Double Inverted Trussed Beam Reinforced with Steel Cable, Construction and Building Materials 50: 736–743. http://dx.doi.org/10.1016/j.conbuildmat.2013.10.036

Gao, Z. 2012. Zhengzhou Yellow River Road-Cum-Railway Bridge, China, Stahlbau 81(2): 151–155. http://dx.doi.org/10.1002/stab.201201522

Goremikins, V.; Serdjuks, D. 2010a. Rational Structure of Trussed Beam, in Proc. of the 10th International Conference “Modern Building Materials, Structures and Techniques”, selected papers. Ed. by Čygas, D.; Froehner, K. D., 19–21 May, 2010, Vilnius, Lithuania. Vilnius: Technika, 613–618.

Goremikins, V.; Serdjuks. D. 2010b. Rational Large Span Structure of Pultrusion Composite Trussed Beam, Scientific Journal of Riga Technical University 11: 25–30.

Megson, T. H. G. 2005. Structural and Stress Analysis. 2nd edition. Elsevier. 744 p.

Miyachi, K.; Nakamura, S.; Manda, A. 2012. Progressive Collapse Analysis of Steel Truss Bridges and Evaluation of Ductility, Journal of Constructional Steel Research 78: 192–200. http://dx.doi.org/10.1016/j.jcsr.2012.06.015

Nan, H.; Gong-Lian, D.; Bin, Y.; Ke, L. 2014. Recent Development of Design and Construction of Medium and Long Span High-Speed Railway Bridges in China, Engineering Structures 74: 233–241. http://dx.doi.org/10.1016/j.engstruct.2014.05.052

Pałkowski, S. 2001. Konstrukcje stalowe. Wybrane zagadnienia obliczania i projektowania [Steel Structures. Some Aspects of Computation and Design]. PWN. 225 p.

Reintjes, K. H. 2009. Das Zügelgurt-Fachwerk über die Mulde in Wurzen – eine Revision nach Entwurf und Ausführung [The Bridle-Chord Truss Bridge across the River Mulde near Wurzen, Germany – a Review after Design and Construction], Stahlbau 78(3): 188–196. http://dx.doi.org/10.1002/stab.200910018

Reintjes, K. H.; Gebert, G. 2006. Das Zügelgurt-Fachwerk der Muldebrücke Wurzen [The Truss Stayed Structure of the Mulde Bridge Wurzen], Stahlbau 75 (8): 613–623. http://dx.doi.org/10.1002/stab.200610063

Ryżyński, A.; Wołowicki. W.; Skarżewski, J.; Karlikowski; J. 1984.

Mosty stalowe [Steel Bridges]. WKŁ. 594 p.

Siekierski, W. 2010a. Kolejowe przęsła kratownicowe z pasem sztywnym [Railway Truss Bridges with Rigid Flange], Inżynieria i Budownictwo 2: 97–99.

Siekierski, W. 2010b. Konstrukcyjne uwarunkowania pracy statycznej sztywnego pasa mostowego dźwigara kratownicowego [Structural Factors of Static Behaviour of Rigid Flange of Bridge Truss Girder], Archiwum Instytutu Inżynierii Lądowej 7: 119–128.

Zhang, Y. Z.; Zhang, M. 2011. Structure and Behavior of Floor System of Two Super High-Speed Railway Changjiang Composite Bridges, Journal of Central-South University of Technology 18: 542–549. http://dx.doi.org/10.1007/s11771-011-0729-z




DOI: 10.3846/bjrbe.2015.20

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Vilnius Gediminas Technical University (VGTU) Press Technika