Investigation on Application of Basalt Materials as Reinforcement for Flexural Elements of Concrete Bridges

Viktor Gribniak, Aleksandr K. Arnautov, Gintaris Kaklauskas, Vytautas Tamulenas, Edgaras Timinskas, Aleksandr Sokolov


Basalt polymers are rather new materials for civil engineering; therefore, identification of peculiarities and limitations of application of such polymers in concrete structures (particularly bridges) is of vital importance. This paper experimentally investigates deformation behaviour and cracking of flexural elements, which are predominant parameters governing serviceability of the bridges. Unlike a common practice, the present study is not limited by the analysis of concrete beams reinforced with the polymer bars; it also considers effectiveness of basalt fibre reinforced polymer sheets for repairing the beams. The analysis has revealed that a combination of the high strength and elasticity polymer materials governs the effective repair of the beams by significantly increasing (up to 40%) the structural stiffness.


reinforced concrete; basalt fibre reinforced polymer (BFRP); internal bars; external sheets; test data

Full Text:



Cigna, R.; Andrade, C.; Nürnberger, U.; Polder, R.; Weydert, R.; Seitz, E. 2003. Corrosion of Steel in Reinforced Concrete Structures. Final Report COST 521. European Commission, Directorate-General for Research, Luxembourg, 238 p.

Gribniak, V.; Arnautov, A. K.; Kaklauskas, G.; Jakstaite, R.; Tamulenas, V.; Gudonis, E. 2014. Deformation Analysis of RC Ties Externally Strengthened with FRP Sheets, Mechanics of Composite Materials 50(5): 669–676.

Gribniak, V.; Cervenka, V.; Kaklauskas, G. 2013a. Deflection Prediction of Reinforced Concrete Beams by Design Codes and Computer Simulation, Engineering Structures 56: 2175–2186.

Gribniak, V.; Kaklauskas, G.; Torres, L.; Daniunas, A.; Timinskas, E.; Gudonis, E. 2013b. Comparative Analysis of Deformations and Tension-Stiffening in Concrete Beams Reinforced with GFRP or Steel Bars and Fibers, Composites Part B: Engineering 50: 158– 170.

Gribniak, V.; Kaklauskas, G.; Bacinskas, D. 2008. Experimental Investigation of Shrinkage Influence on Tension Stiffening of RC Beams, in Proc. of the 8th International Conference: Creep, Shrinkage and Durability of Concrete and Concrete Structures (ConCreep 8). Ed. by Sato, R.; Maekawa, K.; Tanabe, T.; Saka- ta, K.; Nakamura, H.; Mihashi, H., 30 September – 2 October, 2008, Ise-Shima, Japan. Taylor & Francis, 571–577.

Gudonis, E.; Timinskas, E.; Gribniak, V.; Kaklauskas, G.; Arnautov, A. K.; Tamulenas, V. 2014. FRP Reinforcement for Concrete Structures: State-of-the-Art Review of Application and Design, Engineering Structures and Technologies 5(4): 147– 158.

High, C. M. 2014. Use of Basalt Fibers for Reinforced Concrete Structures: Ms Thesis. North Carolina State University. 131 p.

Jakubovskis, R.; Kaklauskas, G.; Gribniak, V.; Weber, A.; Juknys, M. 2014. Serviceability Analysis of Concrete Beams with Different Arrangements of GFRP Bars in the Tensile Zone, Journal of Composites for Construction-ASCE 18(5): 04014005-1–04014005-10.

Kaklauskas, G.; Christiansen, M. B.; Bacinskas, D.; Gribniak, V. 2008. Deformation Model of Reinforced Concrete Members Taking into Consideration Shrinkage and Creep Effects at the Pre-Loading Stage. Final Report No. T-1025/08. Vilnius. 47 p.

Ke, W.; Li, Z. 2008. Survey of Corrosion Cost in China and Preventive Strategies, Corrosion Science and Technology 7(5): 259–264.

Miller, A. D. 2006. Repair of Impact-Damaged Prestressed Concrete Bridge Girders Using Carbon Fiber Reinforced Polymer (CFRP) Materials: Ms Thesis. North Carolina State University, 155 p.

Sim, J.; Park, C.; Moon, D. Y. 2005. Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures, Composites Part B: Engineering 36(6–7): 504–512.

Timinskas, E.; Jakštaitė, R.; Gribniak, V.; Tamulėnas, V.; Kaklauskas, G. 2013. Accuracy Analysis of Design Methods for Concrete Beams Reinforced with Fiber Reinforced Polymer Bars, Engineering Structures and Technologies 5(3): 123–133.

Zhishena, W.; Xina, W.; Ganga, W. 2012. Advancement of Structural Safety and Sustainability with Basalt Fiber Reinforced Polymers, in Proc. of CICE 2012 6th International Conference on FRP Composites in Civil Engineering, International Institute for FRP in Construction (IIFC), June 13-15, 2012, Rome, Italy.

DOI: 10.3846/bjrbe.2015.25


  • There are currently no refbacks.

Copyright (c) 2015 Vilnius Gediminas Technical University (VGTU) Press Technika