The Heat Exchange in the Edge Area – the Problem of Hot Mix Asphalt Compaction

Authors

  • Paweł Mieczkowski Dept of Roads, Bridges and Building Materials, Westpomeranian Technological University of Szczecin, 50 Aleja Piastów Street, Szczecin 70-311, Poland

DOI:

https://doi.org/10.3846/bjrbe.2015.26

Keywords:

hot mix asphalt, heat exchange, convection, conducting, layer edge

Abstract

The temperature of asphalt mix during its laying is not homogenous. Edges are a particular place. An intensive collection of heat occurs there through horizontal (upper and bottom) surfaces and lateral surface. An additional factor is the thermal layer created on the surface of the layer which multiplies the potential to collect the heat by the surround- ings. The theoretical calculations carried out and confirmed by laboratory tests and measurements on the road allow foreseeing the speed of temperature drops for these areas. This facilitates the correct planning of the process of compaction, and by the same obtaining the required density of mix.

References

Bell, C. A.; Hiks, R. G.; Wilson, J. E. 1984. Effect of Percent Compaction on Asphalt Mixture Life, Placement and Compaction of Asphalt Mixtures, ASTM Special Technical Publication 829: 48–66. http://dx.doi.org/10.1520/STP32504S

Bražiūnas, J.; Sivilevičius, H. 2010. The Bitumen Batching System’s Modernization and Its Effective Analysis at the Asphalt Mixing Plant, Transport 25(3): 325–335. http://dx.doi.org/10.3846/transport.2010.40

Choubane, B.; Page, G. C.; Musselman, J. A. 1998. Investigation of Water Permeability of Coarse Graded Superpave Pavements, Journal of the Association of Asphalt Paving Technologists 67: 254–276.

Dubois, V.; De La Roche, Ch.; Burban, O. 2010. Influence of the Compaction Process on the Air Void Homogeneity of Asphalt Mixtures Samples, Construction and Building Materials 24(6): 885–897. http://dx.doi.org/10.1016/j.conbuildmat.2009.12.004

Harvey, J. T.; Tsai, B. W. 1996. Effects of Asphalt Content and Air Void Content on Mix Fatigue and Stiffness, Journal of the Transportation Research Board 1543: 38–45. http://dx.doi.org/10.3141/1543-05

Hobler, T. 1986. Ruch ciepła i wymienniki [Movement of Heat and Heat Exchangers]. Warszawa: WNT. 772 p. (in Polish).

Houman, S. 2012. Assessment of Compaction Temperatures on Hot Mix Asphalt (HMA) Properties, World Academy of Science, Engineering and Technology 62: 197–201.

Hughes, C. S. 1989. Compaction of Asphalt Pavement. National Cooperative Highway Research Program Synthesis of Highway Practice 152, Transportation Research Board, National Research Council, Washington, D.C. 48 p.

Kassem, E.; Scullion, T.; Masad, E.; Chowdhury, A. 2012. Comprehensive Evaluation of Compaction of Asphalt Pavements and a Practical Approach for Density Predictions, Journal of the Transportation Research Board 2268: 98–107. http://dx.doi.org/10.3141/2268-12

Kennedy, T. W.; Roberts, F. L.; McGennis, R. B. 1984. Effects of Compaction Temperature and Effort on the Engineering Properties of Asphalt Concrete Mixture, ASTM Special Technical Publication 829: 48–66. http://dx.doi.org/10.1520/STP32500S

Linden, R. N.; Mahoney, J. P.; Jackson, N. C. 1989. Effect of Compaction on Asphalt Concrete Performance, Journal of the Transportation Research Record 1217: 20–28.

Mahoney, J. P.; Muench, S. T.; Pierce, L. M.; Read, S. A.; Jakob, H.; Moore, R. 2000. Construction-Related Temperature Differentials in Asphalt Concrete Pavement, Transportation Research Record 1712: 93–100. http://dx.doi.org/10.3141/1712-12

Mieczkowski, P. 2006. The Heat Balance in the Process of Compacting of Hot Asphalt Mineral Mixture Using Steel Rollers, Archives of Civil Engineering LII(1): 151–175.

Mrawira, D. M.; Luca, J. 2006. Effect of Aggregate Type, Gradation, and Compaction Level on Thermal Properties of Hot-Mix Asphalts, Canadian Journal of Civil Engineering 33(11): 1410–1417. http://dx.doi.org/10.1139/l06-076

Rafiei, K.; Kavussi, A.; Yasrobi, S. 2012. Construction Quality Control of Unbound Layers Based on Stiffness Modulus Criteria, Journal of Civil Engineering and Management 18(1): 5–13. http://dx.doi.org/10.3846/13923730.2011.619328

Scherocman, J. A. 1984. Guidelines for Compacting Asphalt Concrete Pavement, Better Roads 54(3): 12–17.

Tarefder, R.; Yousefi, S. 2012. Laboratory Evaluation of Moisture Damage in Asphalt, Canadian Journal of Civil Engineering 39(1): 104–115. http://dx.doi.org/10.1139/l11-114

Timm, H. D.; Voller, R. V.; Lee, E.; Harvey, J. 2001. Calcool: a Multi-Layer Asphalt Pavement Cooling Tool for Temperature Prediction during Construction, The International Journal of Pavement Engineering 2(3): 169–185. http://dx.doi.org/10.1080/10298430108901725

Williams, S. G.; Pervis, A.; Bhupathiraju, L. S.; Porter, A. 2009. Methods for Evaluating Longitudinal Joint Quality in Asphalt Pavements, Journal of the Transportation Research Board 2098: 113–123. http://dx.doi.org/10.3141/2098-12

Willoughby, K. A.; Mahoney, J. P.; Pierce, L. M; Uhlmeyer, J. S.; Anderson, K. W.; Read, S. A.; Muench, S. T.; Thompson, T. R.; Moore, R. 2001. Construction-Related Asphalt Concrete Pavement Temperature Differentials and the Corresponding Density Differentials. Research Report. Research Project Agreement T9903, Task A3, Washington State Transportation Center, Washington DC. 153 p.

Wiśniewski, S. 1988. Wymiana ciepła. [Heat Exchange]. Warszawa: PWN. 363 p. (in Polish).

Downloads

Published

27.09.2015

How to Cite

Mieczkowski, P. (2015). The Heat Exchange in the Edge Area – the Problem of Hot Mix Asphalt Compaction. The Baltic Journal of Road and Bridge Engineering, 10(3), 207-215. https://doi.org/10.3846/bjrbe.2015.26