Evaluation of Possibilities for the Climatic Distribution of Regions From the Point of View of Road Construction

Lina Juknevičiūtė-Žilinskienė, Alfredas Laurinavičius


Seeking to reduce a negative impact of unfavourable weather conditions on road traffic, many countries introduce modern technologies allowing to objectively assessing meteorological conditions of roads. The world over, data from the automated meteorological stations of Road Weather Information System have been long ago used on a significantly larger scale than only for the organization of road maintenance works. International experience of introducing Road Traffic Information Systems in European Union and other countries of the world shows that Road Weather Information Systems give good results for increasing road safety, improving the level of road user information and solving the road construction issues. Road Weather Information System is a system of technologies and decision-making using historical and real-time data of roads and weather conditions. The collected and processed multi-year data from meteorological stations is a great assistance in designing or reconstructing road pavement structures. Road pavement structure is highly affected by a negative air temperature and frozen ground. The impact of negative temperature is expressed by the thickness of frost blanket course. The thickness of frost blanket course depends on a frost susceptibility of soil. To determine the thickness of frost blanket course it is necessary to assess the frost impact, therefore it was up to the purpose − climatic distribution of regions the territory of Lithuania according to the distribution of frost impact and the depth of frozen ground. Based on climatic maps compiled, a correction of the thickness of road pavement structure was suggested.


air temperature; climatic distribution of regions; depth; frozen ground; Freezing Index; frost; frozen ground; road pavement structure; Road Weather Information System; thickness

Full Text:



Bukantis, A.; Bartkevičienė, G. 2005. Thermal Effects of the North Atlantic Oscillation on the Cold Period of the Year in Lithuania, Climate Research 28(3): 221–228. http://dx.doi.org/10.3354/cr028221

Chen, D; Chen, H. W. 2013. Using the Köppen Classification to Quantify Climate Variation and Change: an Example for 1901–2010, Environmental Development 6: 69–79. http://dx.doi.org/10.1016/j.envdev.2013.03.007

Darrowa, M. M.; Huanga, S. L.; Akagawab, S. 2009. Adsorbed Cation Effects on the Frost Susceptibility of Natural Soils, Cold Regions Science and Technology 55(3): 263–277. http://dx.doi.org/10.1016/j.coldregions.2008.08.002

Eriksson, M.; Lindqvist, S. 2002. Regional Influence on Road Slipperiness during Winter Precipitation Events, in Proc. of the 11th International Road Weather Conference, 26−28 January 2002, Sapporo, Japan. 8 p.

Juknevičiūtė-Žilinskienė, L. 2010. Methodology for the Evaluation of the Effect of the Climate of Lithuania on Road Construction and Climatic Regioning, The Baltic Journal of Road and Bridge Engineering 5(1): 62−68. http://dx.doi.org/10.3846/bjrbe.2010.09

Leonovich, I.; Čygas, D. 2006. Road Climatology: Determination of Calculated Values of Meteorological Characteristics, The Baltic Journal of Road and Bridge Engineering 1(4): 167–175.

Lisøa, K. R.; Kvandeb, T.; Hygend, H. O.; Thuec, J. V.; Harstveitd, K. 2007. A Frost Decay Exposure Index for Porous, Mineral Building Materials, Building and Environment 42(10): 3547– 3555. http://dx.doi.org/10.1016/j.buildenv.2006.10.022

Peel, M. C.; Finlayson, B. L.; McMahon, T. A. 2007. Updated World Map of the Köppen-Geiger Climate Classification, Hydrology and Earth System Sciences 11: 1633–1644. http://dx.doi.org/10.5194/hess-11-1633-2007

Pokhrela, R. M.; Kuwanoc, J.; Tachibanac, S. 2013. A Kriging Method of Interpolation Used to Map Liquefaction Potential over Alluvial Ground, Engineering Geology 152(1): 26–37. http://dx.doi.org/10.1016/j.enggeo.2012.10.003

Riehma, M.; Gustavssonb, T.; Bogrenb, J.; Janssona, P. 2012. Ice Formation Detection on Road Surfaces Using Infrared Thermometry, Cold Regions Science and Technology 83−34: 71−76. http://dx.doi.org/10.1016/j.coldregions.2012.06.004

Schönwiese, Ch. D.; Janoschitz, R. 2008. Klima–Trendatlas Deutschland 1901–2000. Berichte des instituts für Atmosphäre und umwelt der universität, Frankfurt/Main. No. 4. 64 p. Available from Internet: https://www.uni-frankfurt.de

Tighe, S. L.; Mills, B.; Haas, C. T.; Baiz, S. 2007. Using Road Weather Information Systems (RWIS) to Control Load Restrictions on Gravel and Surface-Treated Highways. Technical Report, Ontario, USA. 127 p.

Tveito, O. E.; Førland, E. J.; Alexandersson, H.; Drebs, A.; Jónsson, T.; Tuomenvirta, H.; Vaarby Laursen, E. 2001. Nordic Climate Maps. DNMI – Report No. 06/01 Klima, Norwegian Meteorological Institute. 29 p. ISSN 0805-9918

Tveito, O. E.; Førland, E.; Heino, R.; Hanssen-Bauer, I.; Alexandersson, H.; Dahlström, B.; Drebs, A.; Kern-Hansen, C.; Jónsson, T.; Vaarby Laursen, E.; Westman, Y. 2000. Nordic Temperature Maps. DNMI – Report No. 09/00 Klima, Norwegian Meteorological Institute. 55 p. ISSN 0805-9918

Wua, T.; Lib, Y. 2013. Spatial Interpolation of Temperature in the United States Using Residual Kriging, Applied Geography 44: 112–120. http://dx.doi.org/10.1016/j.apgeog.2013.07.012

Zhang, T.; Xu, X.; Xu, S. 2015. Method of Establishing an Underwater Digital Elevation Terrain Based on Kriging Interpolation, Measurement 63: 287–298. http://dx.doi.org/10.1016/j.measurement.2014.12.025

Fedotov, G. A.; Pospelov, P. I. 2009. Izyskanija i proektirovanie avtomobil’nyh dorog. Kiniga 1. Moskva: Vysšaja škola. 646 s. ISBN 9785060060560. (in Russian).

DOI: 10.3846/bjrbe.2015.33


  • There are currently no refbacks.

Copyright (c) 2015 Vilnius Gediminas Technical University (VGTU) Press Technika