Evaluation of Calculation Methods used for Estimating the Ultimate Moment Resistance of Bridge Decks Reinforced with FRP Bars

Authors

  • Tomas Skuturna Dept of Reinforced Concrete and Masonry Structures, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT–10223 Vilnius, Lithuania
  • Juozas Valivonis Dept of Reinforced Concrete and Masonry Structures, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT–10223 Vilnius, Lithuania

DOI:

https://doi.org/10.3846/bjrbe.2016.03

Keywords:

concrete bridge deck, design methods, FRP bar reinforcement, statistical analysis.

Abstract

A statistical research of the calculation methods for calculating ultimate moments of concrete elements reinforced with fibre-reinforced plastic is presented. For this purpose a database of experimental results has been collected. Calculations of the ultimate moment resistance were performed according to three design recommendations. Wilk-Shapiro test were used to determine the distribution of experimental and theoretical data. The statistical research to evaluate the calculation methods was performed by testing the statistical hypothesis on the differences between theoretical and experimental values. It is suggested to calculate the coefficient of confidence for assessing the accuracy of calculation methods.

References

Aiello, M. A.; Ombres, L. 2000. Load-Deflection Analysis of FRP Reinforced Concrete Flexural Members, Journal of Composites for Construction 4(4): 164–171. http://dx.doi.org/10.1061/(ASCE)1090-0268(2000)4:4(164)

Aktas, M.; Sumer, Y. 2014. Nonlinear Finite Element Analysis of Damaged and Strengthened Reinforced Concrete Beams, Journal of Civil Engineering and Management 20(2): 201–210. http://dx.doi.org/10.3846/13923730.2013.801889

Alsayed, S. H.; Al-Salloum, Y. A.; Almusallam, T. H. 2000. Performance of Glass Fiber Reinforced Plastic Bars as a Reinforcing Material for Concrete Structures, Composites Part B: Engineering 31(6–7): 555–567. http://dx.doi.org/10.1016/S1359-8368(99)00049-9

Alsayed, S. H. 1998. Flexural Behaviour of Concrete Beams Reinforced with GFRP Bars, Cement and Concrete Composites 20(1): 1–11. http://dx.doi.org/10.1016/S0958-9465(97)00061-9

Al-Sunna, R.; Pilakoutas, K.; Hajirasouliha, I.; Guadagnini, M. 2012. Deflection Behaviour of FRP Reinforced Concrete Beams and Slabs: an Experimental Investigation, Composites: Part B 43(5): 2125–2134. http://dx.doi.org/10.1016/j.compositesb.2012.03.007

Ashour, A. F. 2006. Flexural and Shear Capacities of Concrete Beams Reinforced with GFRP Bars, Construction and Building Materials 20(10): 1005–1015. http://dx.doi.org/10.1016/j.conbuildmat.2005.06.023

Ashour, A. F.; Family, M. 2006. Tests of Concrete Flanged Beams Reinforced with CFRP Bars, Magazine of Concrete Research 58(9): 627–639. http://dx.doi.org/10.1680/macr.2006.58.9.627

Barris, C.; Torres, Ll.; Turon, A.; Baena, M.; Catalan, A. 2009. An Experimental Study of the Flexural Behaviour of GFRP RC Beams and Comparison with Prediction Models, Composite Structures 91(3): 286–295. http://dx.doi.org/10.1016/j.compstruct.2009.05.005

Barris, C.; Torres, Ll.; Miàs, C.; Vilanova, I. 2012. Design of FRP Reinforced Concrete Beams for Serviceability Requirements, Journal of Civil Engineering and Management 18(6): 843–857. http://dx.doi.org/10.3846/13923730.2012.720934

Benmokrane, B.; El-Salakawy, E.; El-Ragaby, A.; Lackey, T. 2006. Designing and Testing of Concrete Bridge Decks Reinforced with Glass FRP Bars, Journal of Bridge Engineering 11(2): 217–229. http://dx.doi.org/10.1061/(ASCE)1084-0702(2006)11:2(217)

Benmokrane, B.; El-Salakawy, E.; Desgagne, G.; Lackey, T. 2004. FRP Bars for Bridges, Concrete International 26(8): 84–90.

Benzaid, R.; Mesbah, H. A. 2014. The Confinement of Concrete in Compression Using CFRP Composites – Effective Design Equations, Journal of Civil Engineering and Management 20(5): 632–648. http://dx.doi.org/10.3846/13923730.2013.801911

Bouguerra, K.; Ahmed, E. A.; El-Gamal, S.; Benmokrane B. 2011. Testing of Full-Scale Concrete Bridge Deck Slabs Reinforced with Fiber-Reinforced Polymer (FRP) Bars, Construction and Building Materials 25: 3956–3965. http://dx.doi.org/10.1016/j.conbuildmat.2011.04.028

Dang, Y.; Xie, N.; Kessel, A.; McVey, E.; Pace, A.; Shi, X. 2014. Accelerated Laboratory Evaluation of Surface Treatments for Protecting Concrete Bridge Decks From Salt Scaling, Construction and Building Materials 55: 128–135. http://dx.doi.org/10.1016/j.conbuildmat.2014.01.014

Daugevičius, M.; Valivonis, J.; Marčiukaitis, G. 2012. Deflection Analysis of Reinforced Concrete Beams Strengthened with Carbon Fibre Reinforced Polymer under Long-Term Load Action, Journal of Zhejiang University-Science 13(8): 571–583. http://dx.doi.org/10.1631/jzus.A1100317

Duranovic, N.; Pilakoutas, K.; Waldron, P. 1997. Tests on Concrete Beams Reinforced with Glass Fibre Reinforced Plastic Bars, in Proc. of the 3rd International Symposium on Non-Metalic (FRP) Reinforcement for Concrete Structures, vol. 2. 14– 16 October 1997, Sapporo, Japan. Japan Concrete Institute, 1997, 479–486.

El-Ragaby, A.; El-Salakawy, E.; Benmokrane, B. 2007. Fatigue Analysis of Concrete Bridge Deck Slabs Reinforced with EGlass/ Vinyl Ester FRP Reinforcing Bars, Composites Part B: Engineering 5–6: 703–711. http://dx.doi.org/10.1016/j.compositesb.2006.07.012

Fayyadh, M. M.; Razak, H. A. 2014. Analytical and Experimental Study on Repair Effectiveness of CFRP Sheets for RC Beams, Journal of Civil Engineering and Management 20(1): 21–31. http://dx.doi.org/10.3846/13923730.2013.799095

Hassan, T.; Abdelrahman, A.; Tadros, G.; Rizkalla, S. 2000. Fibre Reinforced Polymer Reinforcing Bars for Bridge Decks, Canadian Journal of Civil Engineering 27(5): 839–849. http://dx.doi.org/10.1139/l99-098

Kassem, C.; Farghaly, A.; Benmokrane, B. 2011. Evaluation of Flexural Behavior and Serviceability Performance of Concrete Beams Reinforced with FRP Bars, Journal of Composites for Construction 15(5): 682–695. http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000216

Lale Arefi, S.; Naghipour, M.; Turskis, Z.; Nematzadeh, M. 2014. Evaluation of Grooving Method to Postpone Debonding of FRP Laminates in WPC-FRP Beams, Journal of Civil Engineering and Management 20(2): 237–246. http://dx.doi.org/10.3846/13923730.2013.878379

Laoubi, K.; El-Salakawy, E.; Benmokrane, B. 2006. Creep and Durability of Sand-Coated Glass FRP Bars in Concrete Elements under Freeze/Thaw Cycling and Sustained Loads, Cement and Concrete Composites 28(10): 869–878. http://dx.doi.org/10.1016/j.cemconcomp.2006.07.014

Lapko, A.; Urbanski, M. 2015. Experimental and Theoretical Analysis of Deflections of Concrete Beams Reinforced with Basalt Rebar, Archives of Civil and Mechanical Engineering 15(1): 223–230. http://dx.doi.org/10.1016/j.acme.2014.03.008

Lee, Y. H.; Kim, M. S. 2012. Flexural Behavior and Deflection Prediction of Concrete Beams Reinforced with AFRP and CFRP Bars, Special Publication 284: 1–26.

Li, X.; Lv, H.; Zhou, S. 2012. Flexural Behavior of GFRP-Reinforced Concrete Encased Steel Composite Beams, Construction and Building Materials 28(1): 255–262. http://dx.doi.org/10.1016/j.conbuildmat.2011.08.058

Marčiukaitis, G.; Valivonis, J.; Bareišis, J. 2007. An Analysis of the Joint Operation of a CFRP Concrete in Flexural Elements, Mechanics of Composite Materials 43(5): 467–478. http://dx.doi.org/10.1007/s11029-007-0044-9

Masmoudi, R.; Thériault, M.; Benmokrane, B. 1998. Flexural Behavior of Concrete Beams Reinforced with Deformed Fiber Reinforced Plastic Reinforcing Rods, ACI Structural Journal 95(6): 665–676.

Matta, F.; Nanni, A. 2009. Connection of Concrete Railing Post and Bridge Deck with Internal FRP Reinforcement, Journal of Bridge Engineering 14(1): 66–76. http://dx.doi.org/10.1061/(ASCE)1084-0702(2009)14:1(66)

Meisami, M. H.; Mostofinejad, D.; Nakamura, H. 2013. Punching Shear Strengthening of Two-Way Flat Slabs Using CFRP Rods, Composite Structures 99: 112–122. http://dx.doi.org/10.1016/j.compstruct.2012.11.028

Montgomery, D. C.; Runger, G. C. 2002. Applied Statistics and Probability for Engineers. 3rd ed. John Wiley & Sons. 822 p. Mostofinejad, D.; Ilia, E. 2014. Confining of Square RC Columns with FRP Sheets Using Corner Strip–Batten Technique, Construction and Building Materials 70: 269–278. http://dx.doi.org/10.1016/j.conbuildmat.2014.07.073

Mostofinejad, D.; Moghaddas, A. 2014. Bond Efficiency of EBR and EBROG Methods in Different Flexural Failure Mechanisms of FRP Strengthened RC Beams, Construction and Building Materials 54: 605–614. http://dx.doi.org/10.1016/j.conbuildmat.2014.01.002

Mousavi, S. R.; Esfahani, M. R. 2012. Effective Moment of Inertia Prediction of FRP-Reinforced Concrete Beams Based on Experimental Results, Journal of Composites for Construction 16(5): 490–498. http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000284

Nelson, M.; Fam, A. 2014. Full Bridge Testing at Scale Constructed with Novel FRP Stay-in-Place Structural Forms for Concrete Deck, Construction and Building Materials 50: 368–376. http://dx.doi.org/10.1016/j.conbuildmat.2013.09.056

Pakrastinsh, L.; Rocens, K.; Serdjuks, D. 2006. Deformability of Hierarchic Cable Roof, Journal of Constructional Steel Research 62(12): 1295–1301. http://dx.doi.org/10.1016/j.jcsr.2006.04.025

Pecce, M.; Manfredi, G.; Cosenza, E. 2000. Experimental Response and Code Models of GFRP RC Beams in Bending, Journal of Composites for Construction 4(4): 182–190. http://dx.doi.org/10.1061/(ASCE)1090-0268(2000)4:4(182)

Rafi, M. M.; Ali Nadjai, A. N.; Ali, F.; Talamona, D. 2008. Aspects of Behaviour of CFRP Reinforced Concrete Beams in Bending, Construction and Building Materials 22(3): 277–285. http://dx.doi.org/10.1016/j.conbuildmat.2006.08.014

Sakurada, R.; Shimomura, T.; Maruyama, K.; Matsubara, S. 2006. Bending Behavior of RC Beam Reinforced with Braided Aramid FRP Bar, in Proc. of the 31st Conference on Our World in Concrete & Structures, 16–17 August 2006, Singapore. Available from Internet: http://www.cipremier.com/e107_files/ downloads/Papers/100/31/100031043.pdf

Serdjuks, D.; Rocens, K.; Pakrastinsh, L. 2003. Prestress Losses in the Stabilizing Cables of a Composite Saddle-Shaped Cable Roof, Mechanics of Composite Materials 39(4): 341–346. http://dx.doi.org/10.1023/A:1025646612012

Shapiro, S. S.; Wilk, M. B. 1965. An Analysis of Variance Test for Normality, Biometrika 52(3‒4): 591–611. http://dx.doi.org/10.2307/2333709

Shin, S.; Seo, D.; Han, B. 2009. Performance of Concrete Beams Reinforced with GFRP Bars, Journal of Asian Architecture and Building Engineering 8(1): 197–204. http://dx.doi.org/10.3130/jaabe.8.197

Skuturna, T.; Valivonis, J. 2014 a. Design Method for Calculating Load-Carrying Capacity of Reinforced Concrete Beams Strengthened with External FRP, Construction and Building Materials 50: 577–583. http://dx.doi.org/10.1016/j.conbuildmat.2013.10.015

Skuturna, T.; Valivonis, J. 2014b. The Statistical Evaluation of Design Methods of the Load-Carrying Capacity of Flexural Reinforced Concrete Elements Strengthened with FRP, Archives of Civil and Mechanical Engineering 15(1): 214–222. http://dx.doi.org/10.1016/j.acme.2014.04.005

Sprince, A.; Korjakins, A.; Pakrastinsh, L. 2013. Time-Dependent Behavior of High Performance Fiber-Reinforced Concrete, Advanced Materials Research 705: 75–80. http://dx.doi.org/10.4028/www.scientific.net/AMR.705.75

Sundarraja, M. C.; Prabhu, G. G. 2013. Behaviour of CFST Members under Compression Externally Reinforced by CFRP Composites, Journal of Civil Engineering and Management 19(2): 184–195. http://dx.doi.org/10.3846/13923730.2012.743925

Szolomicki, J.; Berkowski, P.; Baranski, J. 2015. Computer Modelling of Masonry Cross Vaults Strengthened with Fiber Reinforced Polymer Strips, Archives of Civil and Mechanical Engineering 15(3): 751–766. http://dx.doi.org/10.1016/j.acme.2014.05.006

Thériault, M.; Benmokrane, B. 1998. Effects of FRP Reinforcement Ratio and Concrete Strength on Flexural Behavior of Concrete Beams, Journal of Composites for Construction 2(1): 7–16. http://dx.doi.org/10.1061/(ASCE)1090-0268(1998)2:1(7)

Thiagarajan, G. 2003. Experimental and Analytical Behavior of Carbon Fiber-Based Rods as Flexural Reinforcement, Journal of Composites for Construction 7(1): 64–72. http://dx.doi.org/10.1061/(ASCE)1090-0268(2003)7:1(64)

Toutanji, H.; Deng, Y. 2003. Deflection and Crack-Width Prediction of Concrete Beams Reinforced with Glass FRP Rods, Construction and Building Materials 17(1): 69–74. http://dx.doi.org/10.1016/S0950-0618(02)00094-6

Valivonis, J.; Jonaitis, B.; Zavalis, R.; Skuturna, T.; Šneideris, A. 2014. Flexural Capacity and Stiffness of Monolithic Biaxial Hollow Slabs, Journal of Civil Engineering and Management 20(5): 693– 701. http://dx.doi.org/10.3846/13923730.2014.917122

Wang, H.; Belarbi, A. 2011. Ductility Characteristics of Fiber-Reinforced- Concrete Beams Reinforced with FRP Rebars, Construction and Building Materials 25(5): 2391–2401. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.040

Zhao, W.; Pilakoutas, K.; Waldron, P. 1997. FRP Reinforced Concrete: Cracking Behaviour and Determination, in Proc. of the 3rd International Symposium on Non-Metalic (FRP) Reinforcement for Concrete Structures, vol. 2, 14–16 October 1997, Sapporo, Japan. Japan Concrete Institute, 439–446.

Downloads

Published

27.03.2016

How to Cite

Skuturna, T., & Valivonis, J. (2016). Evaluation of Calculation Methods used for Estimating the Ultimate Moment Resistance of Bridge Decks Reinforced with FRP Bars. The Baltic Journal of Road and Bridge Engineering, 11(1), 22–34. https://doi.org/10.3846/bjrbe.2016.03