Perspectives on using Basalt Fiber Filaments in the Construction and Rehabilitation of Highway Pavements and Airport Runways

Kateryna Krayushkina, Olegas Prentkovskis, Andrii Bieliatynskyi, Johny Gigineishvili, Aleksandra Skrypchenko, Alfredas Laurinavičius, Kasthurirangan Gopalakrishnan, Jurijus Tretjakovas



 With the ageing transportation infrastructure, many transportation agencies across the world are focussing on rehabilitating and improving existing pavements. This means more roadwork on pavements open to vehicular traffic. Considering the rapid increase in both traffic volume and intensity in recent years, the work conditions on pavements have become difficult. Thus, there is an important need to design and construct long-lasting pavements that possess high durability, appropriate roughness or smoothness, and that which helps achieve greater time interval between repairs. The use of basalt fibers has shown to improve the durability and mechanical properties of concrete and asphalt mixtures through dispersed reinforcement. This paper presents new data and insights on the use of basalt fibers in concrete and asphalt mixtures acquired from theoretical and experimental research studies that can be useful in the design, construction and rehabilitation of highway pavements and airdrome runways.


durability; fiber; highway pavement; mixture; reinforcement filaments.

Full Text:



Ayuso, M.; Guillén, M.; Alcañiz, M. 2010. The Impact of Traffic Violations on the Estimated Cost of Traffic Accidents with Victims, Accident Analysis & Prevention 42(2): 709–717.

Baghini, M. S.; Ismail, A.; Karim, M. R.; Shokri, F.; Firoozi, A. A. 2014. Effect of Styrene-Butadiene Copolymer Latex on Properties and Durability of Road Base Stabilized with Portland Cement Additive, Construction and Building Materials 68: 740–749.

Du, Y.; Wang S.; Zhang, 2015. Cooling Asphalt Pavement by a Highly Oriented Heat Conduction Structure, Energy and Buildings 102: 182–196.

Dzhigiris, D. D.; Mahova, M. F. 2002. Osnovy proizvodstva bazal’tovyh volokon i izdelij: Monografiya. Moskva: Teplojen-ergetik, 2002. 416 p. (in Russian).

Dzhigiris, D. D.; Mahova, M. F.; Sergeev, V. P. 1989. Bazal’tovoloknistye materialy. Moskva: VNIIJeSM, 72 p. (in Russian).

Ferrotti, G.; Pasquini, E.; Canestrari, F. 2014. Experimental Characterization of High-Performance Fiber-Reinforced Cold Mix Asphalt Mixtures, Construction and Building Materials 57: 117–125.

Füssl, J.; Kluger-Eigl, W.; Blab, R. 2015a. Mechanical Performance of Pavement Structures with Paving Slabs – Part I: Full-Scale Accelerated Tests as Validation for a Numerical Simulation Tool, Engineering Structures 98: 221–229.

Füssl, J.; Kluger-Eigl, W.; Eberhardsteiner, L.; Blab, R. 2015b. Mechanical Performance of Pavement Structures with Paving Slabs – Part II: Numerical Simulation Tool Validated by Means of Full-Scale Accelerated Tests, Engineering Structures 98: 221–229.

Gigineishvili, J. 2014. Results of Survey of Prestressed Concrete Beams Reinforced with Basaltplastic Bars, in ECCE-GSCE-WCCE International Conference Seismics-2014 “Seismic Design and Rehabilitation of Buildings”, 29–30 May 2014, Tbilisi, Georgia, 65–78.

Gribniak, V.; Arnautov, A. K.; Kaklauskas, G.; Tamulenas, V.; Timinskas, E.; Sokolov, A. 2015. Investigation on Application of Basalt Materials as Reinforcement for Flexural Elements of Concrete Bridges, The Baltic Journal of Road and Bridge Engineering 10(3): 201–206.

Gopalakrishnan, K.; Agrawal, A.; Ceylan, H.; Kim, S.; Choudhary, A. 2013. Knowledge Discovery and Data Mining in Pavement Inverse Analysis, Transport 28(1): 1–10.

Hajdukov, G. K.; Volkov, I. V.; Laginov, A. H. 1990. Prochnost’, deformativnost’ i treshhinostojkost’ steklofibrobetonnyh jelementov, Beton i zhelezobeton 9: 15–17. (in Russian).

Hendel, M.; Colombert, M.; Diab, Y.; Royon, L. 2014. Improving a Pavement-Watering Method on the Basis of Pavement Surface Temperature Measurements, Urban Climate 10(1): 189–200.

Holmyanskij, M. M.; Kurilin, V. V.; Edneral, A. F. 1991. Stalefibrobeton s amorfnoj fibroj, Beton i zhelezobeton 6: 9–10. (in Russian).

Karaşahin, M.; Terzi, S. 2014. Performance Model for Asphalt Concrete Pavement Based on the Fuzzy Logic Approach, Transport 29(1): 18–27.

Krayushkina, K.; Prentkovskis, O.; Bieliatynskyi, A.; Junevičius, R. 2012. Use of Steel Slags in Automobile Road Construction, Transport 27(2): 129–137.

Kurtaev, A. S.; Sulejmenov, S. T.; Estemesov, Z. A. 1991. Kompozicionnye materialy na osnove vjazhushhih. Kiev: IPM, 21 p. (in Russian).

Mahova, M. F.; Grebenyuk, N. P. 1980. Dispersnoe armirovanie portlandcementa bazal’tovymi voloknami, Cement 2: 6–19. (in Russian).

Mihajlov, K. V.; Evgen’ev, I. E.; Aslanova, L. G. 1990. Primenenie metallicheskoj armatury v betone, Beton i zhelezobeton 4: 5–7. (in Russian).

Pukalskas, S.; Pečeliūnas, R. Sadauskas, V.; Kilikevičienė, K.; Bogdevičius, M. 2015. The Methodology for Calculation of Road Accident Costs, Transport 30(1): 33–42.

Rabinovich, F. N.; Zueva, V. N.; Makeeva, L. V. 2001. Stojkost’ bazal’tovyh volokon v srede gidratiruyushhih cementov, Steklo i keramika 12: 12–14. (in Russian).

Saraf, C. L. 1998. Pavement Condition Rating System: Review of PCR Methodology. Report No FHWA/OH-99/004. 126 p.

Sivilevičius, H. 2011. Modelling the Interaction of Transport System Elements, Transport 26(1): 20–34.

Soleimani, B.; Ahmadi, E. 2015. Evaluation and Analysis of Vibration During Fruit Transport as a Function of Road Conditions, Suspension System and Travel Speeds, Engineering in Agriculture, Environment and Food 8(1): 26–32.

Talantanova, K. V.; Tolstenev, S. V. 1999. Kompozit – stalefibrobeton v dorozhnom stroitel’stve, Avtomobil’nye dorogi 9: 24– 25. (in Russian).

Tapkin, S.; Özcan, Ş. 2012. Determination of the Optimal Polypropylene Fiber Addition to the Dense Bituminous Mixtures by the Aid of Mechanical and Optical Means, The Baltic Journal of Road and Bridge Engineering 7(1): 22–29.

Teodorovic, D.; Vukadinovic, K. 1998. Traffic Control and Transport Planning: a Fuzzy Sets and Neural Networks Approach. Springer. 387 p.

Toraldo, E.; Mariani, E.; Alberti, S.; Crispino, M. 2015. Experimental Investigation into the Thermal Behavior of Wearing Courses for Road Pavements Due to Environmental Conditions, Construction and Building Materials 98: 846–852.

Veselovskij, D. R.; Savickij, N. V.; Lyashenko, B. A.; Veselovskij, R. A.; Korotkov, O. S. 2006. Issledovanie prochnosti sistemy metallicheskaya podlozhka – armirovannoe polimernoe pokrytie pri izgibe i rastyazhenii, Transportnoe stroitel’stvo 12: 12–15 (in Russian).

Ye, H.; Li, S. 2016. The Imitation of the Road Surface Temperature Variation Characteristics Subjected to Periodical Ambient Conditions, Applied Thermal Engineering 92: 194–201.

Ye, Q.; Wu, S.; Li, N. 2009. Investigation of the Dynamic and Fatigue Properties of Fiber-modified Asphalt Mixtures, International Journal of Fatigue 31: 1598–1602.

DOI: 10.3846/bjrbe.2016.09


1. Analysis of Precision of Geodetic Instruments for Investigating Vertical Displacement of Structures
Boštjan Kovačič, Rok Kamnik, Andrey Pustovgar, Nikolai Vatin
Procedia Engineering  vol: 165  first page: 906  year: 2016  
doi: 10.1016/j.proeng.2016.11.800


  • There are currently no refbacks.

Copyright (c) 2016 Vilnius Gediminas Technical University (VGTU) Press Technika