Perspectives on using Basalt Fiber Filaments in the Construction and Rehabilitation of Highway Pavements and Airport Runways

Authors

  • Kateryna Krayushkina Dept of Airport Reconstruction and Automobile Roads, National Aviation University, Kosmonavta Komarova ave 1, 03680 Kyiv, Ukraine
  • Olegas Prentkovskis Dept of Transport Technological Equipment, Vilnius Gediminas Technical University, Plytinės g. 27, LT–10105 Vilnius, Lithuania
  • Andrii Bieliatynskyi Dept of Airport Reconstruction and Automobile Roads, National Aviation University, Kosmonavta Komarova ave 1, 03680 Kyiv, Ukraine
  • Johny Gigineishvili Progresi Ltd., Vazha-Pshavela ave 16, 0160 Tbilisi, Georgia
  • Aleksandra Skrypchenko Dept of Airport Reconstruction and Automobile Roads, National Aviation University, Kosmonavta Komarova ave 1, 03680 Kyiv, Ukraine
  • Alfredas Laurinavičius Dept of Roads, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT–10223 Vilnius, Lithuania
  • Kasthurirangan Gopalakrishnan Dept of Civil, Construction, and Environmental Engineering, Iowa State University, IA 50011-3232 Ames, United States
  • Jurijus Tretjakovas Dept of Strength of Materials and Engineering Mechanics, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT–10223 Vilnius, Lithuania

DOI:

https://doi.org/10.3846/bjrbe.2016.09

Keywords:

durability, fiber, highway pavement, mixture, reinforcement filaments.

Abstract

 

 With the ageing transportation infrastructure, many transportation agencies across the world are focussing on rehabilitating and improving existing pavements. This means more roadwork on pavements open to vehicular traffic. Considering the rapid increase in both traffic volume and intensity in recent years, the work conditions on pavements have become difficult. Thus, there is an important need to design and construct long-lasting pavements that possess high durability, appropriate roughness or smoothness, and that which helps achieve greater time interval between repairs. The use of basalt fibers has shown to improve the durability and mechanical properties of concrete and asphalt mixtures through dispersed reinforcement. This paper presents new data and insights on the use of basalt fibers in concrete and asphalt mixtures acquired from theoretical and experimental research studies that can be useful in the design, construction and rehabilitation of highway pavements and airdrome runways.

References

Ayuso, M.; Guillén, M.; Alcañiz, M. 2010. The Impact of Traffic Violations on the Estimated Cost of Traffic Accidents with Victims, Accident Analysis & Prevention 42(2): 709–717. http://dx.doi.org/10.1016/j.aap.2009.10.020

Baghini, M. S.; Ismail, A.; Karim, M. R.; Shokri, F.; Firoozi, A. A. 2014. Effect of Styrene-Butadiene Copolymer Latex on Properties and Durability of Road Base Stabilized with Portland Cement Additive, Construction and Building Materials 68: 740–749. http://dx.doi.org/10.1016/j.conbuildmat.2014.06.061

Du, Y.; Wang S.; Zhang, 2015. Cooling Asphalt Pavement by a Highly Oriented Heat Conduction Structure, Energy and Buildings 102: 182–196. http://dx.doi.org/10.1016/j.enbuild.2015.05.020

Dzhigiris, D. D.; Mahova, M. F. 2002. Osnovy proizvodstva bazal’tovyh volokon i izdelij: Monografiya. Moskva: Teplojen-ergetik, 2002. 416 p. (in Russian).

Dzhigiris, D. D.; Mahova, M. F.; Sergeev, V. P. 1989. Bazal’tovoloknistye materialy. Moskva: VNIIJeSM, 72 p. (in Russian).

Ferrotti, G.; Pasquini, E.; Canestrari, F. 2014. Experimental Characterization of High-Performance Fiber-Reinforced Cold Mix Asphalt Mixtures, Construction and Building Materials 57: 117–125. http://dx.doi.org/10.1016/j.conbuildmat.2014.01.089

Füssl, J.; Kluger-Eigl, W.; Blab, R. 2015a. Mechanical Performance of Pavement Structures with Paving Slabs – Part I: Full-Scale Accelerated Tests as Validation for a Numerical Simulation Tool, Engineering Structures 98: 221–229. http://dx.doi.org/10.1016/j.engstruct.2014.10.054

Füssl, J.; Kluger-Eigl, W.; Eberhardsteiner, L.; Blab, R. 2015b. Mechanical Performance of Pavement Structures with Paving Slabs – Part II: Numerical Simulation Tool Validated by Means of Full-Scale Accelerated Tests, Engineering Structures 98: 221–229. http://dx.doi.org/10.1016/j.engstruct.2014.10.055

Gigineishvili, J. 2014. Results of Survey of Prestressed Concrete Beams Reinforced with Basaltplastic Bars, in ECCE-GSCE-WCCE International Conference Seismics-2014 “Seismic Design and Rehabilitation of Buildings”, 29–30 May 2014, Tbilisi, Georgia, 65–78.

Gribniak, V.; Arnautov, A. K.; Kaklauskas, G.; Tamulenas, V.; Timinskas, E.; Sokolov, A. 2015. Investigation on Application of Basalt Materials as Reinforcement for Flexural Elements of Concrete Bridges, The Baltic Journal of Road and Bridge Engineering 10(3): 201–206. http://dx.doi.org/10.3846/bjrbe.2015.25

Gopalakrishnan, K.; Agrawal, A.; Ceylan, H.; Kim, S.; Choudhary, A. 2013. Knowledge Discovery and Data Mining in Pavement Inverse Analysis, Transport 28(1): 1–10. http://dx.doi.org/10.3846/16484142.2013.777941

Hajdukov, G. K.; Volkov, I. V.; Laginov, A. H. 1990. Prochnost’, deformativnost’ i treshhinostojkost’ steklofibrobetonnyh jelementov, Beton i zhelezobeton 9: 15–17. (in Russian).

Hendel, M.; Colombert, M.; Diab, Y.; Royon, L. 2014. Improving a Pavement-Watering Method on the Basis of Pavement Surface Temperature Measurements, Urban Climate 10(1): 189–200. http://dx.doi.org/10.1016/j.uclim.2014.11.002

Holmyanskij, M. M.; Kurilin, V. V.; Edneral, A. F. 1991. Stalefibrobeton s amorfnoj fibroj, Beton i zhelezobeton 6: 9–10. (in Russian).

Karaşahin, M.; Terzi, S. 2014. Performance Model for Asphalt Concrete Pavement Based on the Fuzzy Logic Approach, Transport 29(1): 18–27. http://dx.doi.org/10.3846/16484142.2014.893926

Krayushkina, K.; Prentkovskis, O.; Bieliatynskyi, A.; Junevičius, R. 2012. Use of Steel Slags in Automobile Road Construction, Transport 27(2): 129–137. http://dx.doi.org/10.3846/16484142.2012.690093

Kurtaev, A. S.; Sulejmenov, S. T.; Estemesov, Z. A. 1991. Kompozicionnye materialy na osnove vjazhushhih. Kiev: IPM, 21 p. (in Russian).

Mahova, M. F.; Grebenyuk, N. P. 1980. Dispersnoe armirovanie portlandcementa bazal’tovymi voloknami, Cement 2: 6–19. (in Russian).

Mihajlov, K. V.; Evgen’ev, I. E.; Aslanova, L. G. 1990. Primenenie metallicheskoj armatury v betone, Beton i zhelezobeton 4: 5–7. (in Russian).

Pukalskas, S.; Pečeliūnas, R. Sadauskas, V.; Kilikevičienė, K.; Bogdevičius, M. 2015. The Methodology for Calculation of Road Accident Costs, Transport 30(1): 33–42. http://dx.doi.org/10.3846/16484142.2015.1020871

Rabinovich, F. N.; Zueva, V. N.; Makeeva, L. V. 2001. Stojkost’ bazal’tovyh volokon v srede gidratiruyushhih cementov, Steklo i keramika 12: 12–14. (in Russian).

Saraf, C. L. 1998. Pavement Condition Rating System: Review of PCR Methodology. Report No FHWA/OH-99/004. 126 p.

Sivilevičius, H. 2011. Modelling the Interaction of Transport System Elements, Transport 26(1): 20–34. http://dx.doi.org/10.3846/16484142.2011.560366

Soleimani, B.; Ahmadi, E. 2015. Evaluation and Analysis of Vibration During Fruit Transport as a Function of Road Conditions, Suspension System and Travel Speeds, Engineering in Agriculture, Environment and Food 8(1): 26–32. http://dx.doi.org/10.1016/j.eaef.2014.08.002

Talantanova, K. V.; Tolstenev, S. V. 1999. Kompozit – stalefibrobeton v dorozhnom stroitel’stve, Avtomobil’nye dorogi 9: 24– 25. (in Russian).

Tapkin, S.; Özcan, Ş. 2012. Determination of the Optimal Polypropylene Fiber Addition to the Dense Bituminous Mixtures by the Aid of Mechanical and Optical Means, The Baltic Journal of Road and Bridge Engineering 7(1): 22–29. http://dx.doi.org/10.3846/bjrbe.2012.03

Teodorovic, D.; Vukadinovic, K. 1998. Traffic Control and Transport Planning: a Fuzzy Sets and Neural Networks Approach. Springer. 387 p. http://dx.doi.org/10.1007/978-94-011-4403-2

Toraldo, E.; Mariani, E.; Alberti, S.; Crispino, M. 2015. Experimental Investigation into the Thermal Behavior of Wearing Courses for Road Pavements Due to Environmental Conditions, Construction and Building Materials 98: 846–852. http://dx.doi.org/10.1016/j.conbuildmat.2015.08.047

Veselovskij, D. R.; Savickij, N. V.; Lyashenko, B. A.; Veselovskij, R. A.; Korotkov, O. S. 2006. Issledovanie prochnosti sistemy metallicheskaya podlozhka – armirovannoe polimernoe pokrytie pri izgibe i rastyazhenii, Transportnoe stroitel’stvo 12: 12–15 (in Russian).

Ye, H.; Li, S. 2016. The Imitation of the Road Surface Temperature Variation Characteristics Subjected to Periodical Ambient Conditions, Applied Thermal Engineering 92: 194–201. http://dx.doi.org/10.1016/j.applthermaleng.2015.09.086

Ye, Q.; Wu, S.; Li, N. 2009. Investigation of the Dynamic and Fatigue Properties of Fiber-modified Asphalt Mixtures, International Journal of Fatigue 31: 1598–1602. http://dx.doi.org/10.1016/j.ijfatigue.2009.04.008

Downloads

Published

27.03.2016

How to Cite

Krayushkina, K., Prentkovskis, O., Bieliatynskyi, A., Gigineishvili, J., Skrypchenko, A., Laurinavičius, A., Gopalakrishnan, K., & Tretjakovas, J. (2016). Perspectives on using Basalt Fiber Filaments in the Construction and Rehabilitation of Highway Pavements and Airport Runways. The Baltic Journal of Road and Bridge Engineering, 11(1), 77–83. https://doi.org/10.3846/bjrbe.2016.09