Future Trends in Road Pavement Technologies Development in the Context of Environmental Protection

Piotr Radziszewski, Joanicjusz Nazarko, Tatjana Vilutiene, Katarzyna Dębkowska, Joanna Ejdys, Alicja Gudanowska, Katarzyna Halicka, Jarosław Kilon, Anna Kononiuk, Karol J. Kowalski, Jan B. Król, Łukasz Nazarko, Michał Sarnowski


Construction of modern and durable asphalt and cement pavements requires high quality materials and suitable technologies that take into account sustainability concerns which are related to the environmental protection, mitigation and compensation for road construction effects on surface water and groundwater, soil, air, wildlife, landscape, vibration and noise. The objectives of this paper are to identify possible development directions of materials and technologies in road construction in the time perspective of approximately 30 years. In order to achieve that goal a nationwide Delphi survey with 150 invited experts was deployed. The study concluded that binding materials with improved viscoelastic range – and often with specific modifications – would continue to play a leading role. Furthermore, technologies that enable monitoring the state of road pavement condition in a continuous manner would be used to a greater range. Introduction of sensors into the pavement network would lead to the construction of “smart” roads while spreading of nanomaterial technology would improve the durability and reliability of road pavement construction.


development; environment; materials; pavement; road; sustainability; technology.

Full Text:



Andreescu, L.; Gheorghiu, R.; Zulean, M.; Curaj, A. 2013. Understanding Normative Foresight Outcomes: Scenario Development and the ‘Veil of Ignorance’ Effect, Technological Forecasting and Social Change 80(4): 711–722. http://dx.doi.org/10.1016/j.techfore.2012.09.013

Freitas, E.; Mendonça, C.; Santos, J. A.; Murteira, C.; Ferreira, J. P. 2012. Traffic Noise Abatement: How Different Pavements, Vehicle Speeds and Traffic Densities Affect Annoyance Levels, Transportation Research Part D: Transport and Environment 17(4): 321–326. http://dx.doi.org/10.1016/j.trd.2012.02.001

García, A.; Partl, M. N. 2014. How to Transform an Asphalt Concrete Pavement into a Solar Turbine, Applied Energy 119: 431–437. http://dx.doi.org/10.1016/j.apenergy.2014.01.006

Gaweł, I.; Piłat, J.; Radziszewski, P.; Kowalski, K.; Król, J. 2011. Rubber Modified Bitumen, A Volume in Woodhead Publishing Series in Civil and Structural Engineering: 72–97. http://dx.doi.org/10.1533/9780857093721.1.72

Gómez-Meijide, B.; Pérez, I.; Airey, G.; Thom, N. 2015. Stiffness of Cold Asphalt Mixtures with Recycled Aggregates from Construction and Demolition Waste, Construction and Building Materials 77: 168–178. http://dx.doi.org/10.1016/j.conbuildmat.2014.12.045

Halicka, K.; Lombardi, P. A.; Styczynski, Z. 2015. Future-Oriented Analysis of Battery Technologies, in Proc. of the IEEE International Conference on Industrial Technology (ICIT). vol. 2015-June, no. June, 16 June 2015: 1019–1024. http://dx.doi.org/10.1109/ICIT.2015.7125231

Haluza, D.; Jungwirth, D. 2015. ICT and the Future of Health Care: Aspects of Health Promotion, International Journal of Medical Informatics 84(1): 48–57. http://dx.doi.org/10.1016/j.ijmedinf.2014.09.005

Haritonovs, V.; Tihonovs, J. 2014. Use of Unconventional Aggregates in Hot Mix Asphalt Concrete, The Baltic Journal of Road and Bridge Engineering 9(4): 276–282. http://dx.doi.org/10.3846/bjrbe.2014.34

Kirby, H. R. 1996. Prospects for Progressing Research through Partnership: Comment on Trends in the United Kingdom and the Technology Foresight Program, Transportation Research Record: Journal of the Transportation Research Board 1565: 20–28. http://dx.doi.org/10.3141/1565-05

Koting, S.; Karim, M. R.; Mahmud, H. B.; Hamid, N. A. A. 2014. Mechanical Properties of Cement-Bitumen Composites for Semi-Flexible Pavement Surfacing, The Baltic Journal of Road and Bridge Engineering 9(2): 191–199. http://dx.doi.org/10.3846/bjrbe.2014.24

Lee, H. J; Lee, J. H.; Park, H. M. 2007. Performance Evaluation of High Modulus Asphalt Mixtures for Long Life Asphalt Pavements, Construction and Building Materials 21(5): 1079–1087. http://dx.doi.org/10.1016/j.conbuildmat.2006.01.003

Ma, Z.; Shao, C.; Ma, S.; Ye, Z. 2011. Constructing Road Safety Performance Indicators Using Fuzzy Delphi Method and Grey Delphi Method, Expert Systems with Applications 38(3): 1509–1514. http://dx.doi.org/10.1016/j.eswa.2010.07.062

Nazarko, Ł. 2015. Polityka innowacyjna – inteligentny interwencjonizm?, Optimum. Studia Ekonomiczne 73(1): 85–96 (in Polish). http://dx.doi.org/10.15290/ose.2015.01.73.08

Nazarko, J.; Kononiuk, A. 2013. The Critical Analysis of Scenario Construction in the Polish Foresight Initiatives, Technological and Economic Development of Economy 19(3): 510–532. http://dx.doi.org/10.3846/20294913.2013.809030

Pajea, S. E.; Luonga, J.; Vázqueza, V. F.; Buenoa, M.; Miró, R. 2013. Road Pavement Rehabilitation Using a Binder with a High Content of Crumb Rubber: Influence on Noise Reduction, Construction and Building Materials 47: 789–798. http://dx.doi.org/10.1016/j.conbuildmat.2013.05.008

Paliukaitė, M.; Vaitkus, A.; Zofka, A. 2015. Influence of Bitumen Chemical Composition and Ageing on Pavement Performance, The Baltic Journal of Road and Bridge Engineering 10(1): 97–104. http://dx.doi.org/10.3846/bjrbe.2015.12

Piłat, J.; Radziszewski, P. 2010. Nawierzchnie asfaltowe, Wydawnictwo Komunikacji i Łączności, 540 p. (in Polish).

Ranieri, V.; Ying, G.; Sansalone, J. 2012. Drainage Modeling of Roadway Systems with Porous Friction Courses, Journal Transportation Engineering 138(4): 395–405. http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000338

Santos, J.; Ferreira, A.; Flintsch, G. 2015. A Life Cycle Assessment Model for Pavement Management: Road Pavement Construction and Management in Portugal, International Journal of Pavement Engineering 16(4): 315–336. http://dx.doi.org/10.1080/10298436.2014.942862

Shokrlu, Y. H.; Babadagli, T. 2014. Viscosity Reduction of Heavy Oil/Bitumen Using Micro- and Nano-Metal Particles During Aqueous and Non-Aqueous Thermal Applications, Journal of Petroleum Science and Engineering 119: 210–220. http://dx.doi.org/10.1016/j.petrol.2014.05.012

de Solminihac, H.; Marquez, W.; Halles F.; Chamorro, A.; Valdes, M. 2009. Pavement and Shoulder Condition Models Developed with Expert Surveys: the Chilean Application, The Arabian Journal For Science and Engineering 34 (1B): 137–142.

Thiel, C.; Stengel, T.; Gehlen, C. 2014. Life Cycle Assessment (LCA) of Road Pavement Materials, in F. Torgal-Pacheco, L. Cabeza, J. Labrincha, A. De Magalhaes (Eds.). Eco-Efficient Construction and Building Materials. Life Cycle Assessment (LCA), Eco-Labelling and Case Studies. 368–403. Woodhead Publishing Limited. 617 p. http://dx.doi.org/10.1533/9780857097729.2.368

Toraldo, E.; Saponaro, S. 2015. A Road Pavement Full-Scale Test Track Containing Stabilized Bottom Ashes, Environmental Technology 36(9): 1114–1122. http://dx.doi.org/10.1080/09593330.2014.982714

Yang, Z.; Kowalski, K.J.; Olek, J.; Nantung, T. 2014. Effects of Sand Characteristics and Fly Ash Contents on Properties of Flowable Fill, ACI Materials Journal 111(5): 543–552. http://dx.doi.org/10.14359/51686600

DOI: 10.3846/bjrbe.2016.19


  • There are currently no refbacks.

Copyright (c) 2016 Vilnius Gediminas Technical University (VGTU) Press Technika