Comparison of Functionality of Type A And B Guide Rails of Steel Road Safety Barriers

Authors

  • Daniel Bronislaw Nycz Technical Institute, Jan Grodek State Vocational Academy, Sanok, Poland

DOI:

https://doi.org/10.7250/bjrbe.2018-13.416

Keywords:

comparative analysis, numerical modelling, road safety barriers, simulation, steel guide rails, TB32 crash test

Abstract

The subject of the work is types A and B guide rails of steel road barriers. An experimental three-point bend test on a segment of a B-type guide rail was conducted for experimental validation of the numerical modelling of the guide rail. Numerical modelling of bend tests on A and B guide rail segments was performed. It was shown that the load-bearing capacity and energy absorbed during bending for guide rail A are more than for guide rail B, respectively. Numerical TB32 crash tests (a 1500 kg vehicle, 110 km/h impact speed, 20° impact angle) were carried out in the LS-Dyna system. The Dodge Neon vehicle model was downloaded from the National Crash Analysis Centre in the United States. A 60 m long barrier section is composed of A or B guide rail segments, SIGMA-100 posts, trapezoidal supporting elements and rectangular pads. Each segment has a total length of 4.30 m and an efficient length of 4.00 m. SIGMA-100 posts are 1.90 m long and spaced by 2.00 m. The whole barrier is assembled with M16 screws with a spherical head and a nose, strength class 4.6. The simulated crash tests showed slight differences in the functionality of guide rails A and B regarding the TB32 crash test.

References

Atahan, A. O. (2002). Finite element simulation of a strong-post W-beam guardrail system. Simulation, 78(10), 587-599. https://doi.org/10.1177/0037549702078010001

Borovinšek, M., Vesenjak, M., Ulbin, M., & Ren, Z. (2006). Simulating the impact of a truck on a road-safety barrier. Strojniski Vestnik, 52(2), 101-111.

Borovinšek, M., Vesenjak, M., Ulbin, M., & Ren, Z. (2007). Simulation of crash tests for high containment levels of road safety barriers. Engineering failure analysis, 14(8), 1711-1718. https://doi.org/10.1016/j.engfailanal.2006.11.068

GDDKiA (2001). D-07.05.01 Bariery stalowe ochronne (in Polish)

Hanssen, A. G., Hopperstad, O. S., Langseth, M., & Ilstad, H. (2002). Validation of constitutive models applicable to aluminium foams. International journal of mechanical sciences, 44(2), 359-406. https://doi.org/10.1016/S0020-7403(01)00091-1

Klasztorny, M., Nycz, D. B., & Szurgott, P. (2016). Modelling and simulation of crash tests of N2-W4-A category safety road barrier in horizontal concave arc. International Journal of Crashworthiness, 21(6), 644-659. https://doi.org/10.1080/13588265.2016.1212962

Klasztorny, M., Nycz, N. B., & Romanowski, R. K. (2015). Rubber/foam/composite overlay onto guide B of barrier located on road bend. Archiwum Motoryzacji, 69.

LS-DYNA (2006). Theory Manual. Livermore Sofware Technology Corporation. 680 p.

LS-DYNA (2007). Keyword User’s Manual. Livermore Sofware Technology Corporation. 680 p.

Mikołajów, L. (2006). Drogowe bariery ochronne, Magazyn autostrady 8-9: 14‒18. Available from the Internet: http://viamens.pl/artykuly/ autostrady_2006_08_str014.pdf (in Polish)

Nasution, R. P., Siregar, R. A., Fuad, K., & Adom, A. H. (2009, October). The effect of ASI (Acceleration Severity Index) to different crash velocities. In Int. Conf. on Applications and Design in Mechanical Engineering (ICADME), CD Proc. 1–6. Malaysia (pp. 11-13).

Nycz, D. (2015). Modelowanie i badania numeryczne testów zderzeniowych bariery klasy N2-W4-A na łukach dróg. Ph.D. Thesis. WAT Press. 242 p. (in Polish)

Nycz, D. B. (2016a). Effect of the B-type guiderail joints of a road barrier on the TB11 and TB32 virtual crash tests. Archiwum Motoryzacji, 71(1).

Nycz, D. B. (2016b). Influence of impact angle and humidity on TB11 virtual crash tests for SP-05/2 road safety barrier. Archiwum Motoryzacji, 73(3).

Nycz, D. B. (2016c). Modelowanie końcówek odcinka bariery SP-05/2 do zastosowania w symulacji testów zderzeniowych, Modelowanie Inżynierskie, 29(60), 44-51. Available from the Internet: http://kms.polsl.pl/mi/ pelne_29/06_29_60.pdf (in Polish)

PN-EN 1317-2:2010 Systemy ograniczające drogę – Część 2: Klasy działania, kryteria przyjęcia badań zderzeniowych i metody badań barier ochronnych i balustrad (in Polish)

PN-EN 1317-5+A2:2012 Systemy ograniczające drogę – Część 5: Wymagania w odniesieniu do wyrobów i ocena zgodności dotycząca systemów powstrzymujących pojazd (in Polish)

Ren, Z., & Vesenjak, M. (2005). Computational and experimental crash analysis of the road safety barrier. Engineering Failure Analysis, 12(6), 963-973. https://doi.org/10.1016/j.engfailanal.2004.12.033

Stalprodukt S. A. (2006). Stalowe bariery ochronne. Steel safety barriers. Bochnia, Poland. 124 p. Available from Internet: http://cdn13.pb.smcloud.net/t/ files/19/19/1d/d39f1f61fc/stalowe-bariery-ochronne-stalprodukt.pdf

Transportation Officials. Task Force for Roadside Safety. (2011). Roadside design guide. AASHTO.

Downloads

Published

28.09.2018

How to Cite

Nycz, D. B. (2018). Comparison of Functionality of Type A And B Guide Rails of Steel Road Safety Barriers. The Baltic Journal of Road and Bridge Engineering, 13(3), 274–290. https://doi.org/10.7250/bjrbe.2018-13.416