Strength Characteristics of Cement-Rice Husk Ash Stabilised Sand-Clay Mixture Reinforced with Polypropylene Fibers

Authors

  • Ali Ghorbani Dept. of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Guilan, Iran
  • Maysam Salimzadehshooiili Dept. of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Guilan, Iran
  • Jurgis Medzvieckas Dept of Reinforced Concrete Structures and Geotechnics, Vilnius Gediminas Technical University, Vilnius, Lithuania
  • Romualdas Kliukas Dept of Applied Mechanics, Vilnius Gediminas Technical University, Vilnius, Lithuania

DOI:

https://doi.org/10.7250/bjrbe.2018-13.428

Keywords:

cement, evolutionary polynomial regression, rice husk ash (RHA), polypropylene fibres, sand-clay mixture, strength

Abstract

In this paper, stress-strain behaviour of sand-clay mixture stabilised with different cement and rice husk ash percentages, and reinforced with different polypropylene fibre lengths are evaluated. Mixtures are widely used in road construction for soil stabilisation. It is observed that replacing half of the cement percentage (in high cement contents) with rice husk ash will result in a higher unconfined compressive strength. In addition, the presence of 6 mm polypropylene fibres will help to increase the unconfined compressive strength of stabilised samples, while larger fibres cause reverse behaviour. In addition, introducing a new index for assessing the effect of curing days. Curing Improvement Index it is obtained that larger fibres show higher Curing Improvement Index values. Results gained for the effects of curing days, and fibre lengths are further discussed and interpreted using Scanning Electron Microscopy photos. Based on the conducted Unconfined Compressive Strength, Indirect Tensile Strength, and Flexural Strength tests and using evolutionary polynomial regression modelling, some simple relations for prediction of unconfined compressive strength, indirect tensile strength, and flexural strength of cement-rice husk ash stabilised, and fibre reinforced samples are presented. High coefficients of determination of developed equations with experimental data show the accuracy of proposed relationships. Moreover, using a sensitivity analysis based on Cosine Amplitude Method, cement percentage and the length of polypropylene fibres used to reinforce the stabilised samples are respectively reported as the most and the least effective parameters on the unconfined compressive strength of specimens.

References

Ahangar-Asr, A., Johari, A., & Javadi, A. A. (2012). An evolutionary approach to modelling the soil–water characteristic curve in unsaturated soils. Computers & geosciences, 43, 25-33. https://doi.org/10.1016/j.cageo.2012.02.021

Ali, F. H., Adnan, A., & Choy, C. K. (1992). Geotechnical properties of a chemically stabilized soil from Malaysia with rice husk ash as an additive. Geotechnical & Geological Engineering, 10(2), 117-134. https://doi.org/10.1007/BF00881147

Anwar Hossain, K. M. (2011). Stabilized soils incorporating combinations of rice husk ash and cement kiln dust. Journal of Materials in Civil Engineering, 23(9), 1320-1327. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000310

Ashango, A. A., & Patra, N. R. (2016). Behavior of expansive soil treated with steel slag, rice husk ash, and lime. Journal of Materials in Civil Engineering, 28(7), 06016008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001547

ASTM C496/C496M-17 (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, West Conshohocken, PA: American Society for Testing and Materials

ASTM D1633-17 (2017). Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders, West Conshohocken, PA: American Society for Testing and Materials

ASTM D1635/D1635M-12 (2012). Standard Test Method for Flexural Strength of Soil-Cement Using Simple Beam with Third-Point Loading, West Conshohocken, PA: American Society for Testing and Materials

ASTM D2487-11 (2011). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), West Conshohocken, PA: American Society for Testing and Materials

ASTM D3282-09 (2009). Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes, West Conshohocken, PA: American Society for Testing and Materials

ASTM D4318 (2005). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, West Conshohocken, PA: American Society for Testing and Materials

ASTM D5102-09 (2009). Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures, West Conshohocken, PA: American Society for Testing and Materials

ASTM D698-12e2 (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), West Conshohocken, PA: American Society for Testing and Materials

Ayeldeen, M., & Kitazume, M. (2017). Using fiber and liquid polymer to improve the behaviour of cement-stabilized soft clay. Geotextiles and Geomembranes, 45(6), 592-602. https://doi.org/10.1016/j.geotexmem.2017.05.005

Bagheri, Y., Ahmad, F., & Ismail, M. A. M. (2014). Strength and mechanical behavior of soil–cement–lime–rice husk ash (soil–CLR) mixture. Materials and structures, 47(1-2), 55-66. https://doi.org/10.1617/s11527-013-0044-2

Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and building materials, 19(6), 448-453. https://doi.org/10.1016/j.conbuildmat.2004.08.001

Baziar, M. H., & Ghorbani, A. (2005). Evaluation of lateral spreading using artificial neural networks. Soil Dynamics and Earthquake Engineering, 25(1), 1-9. https://doi.org/10.1016/j.soildyn.2004.09.001

Bourokba Mrabent, S. A., Hachichi, A., Souli, H., Taibi, S., & Fleureau, J. M. (2017). Effect of lime on some physical parameters of a natural expansive clay from Algeria. European Journal of Environmental and Civil Engineering, 21(1), 108-125. https://doi.org/10.1080/19648189.2015.1093963

Cai, Y., Shi, B., Ng, C. W., & Tang, C. S. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering geology, 87(3-4), 230-240. https://doi.org/10.1016/j.enggeo.2006.07.007

Chen, M., Shen, S. L., Arulrajah, A., Wu, H. N., Hou, D. W., & Xu, Y. S. (2015). Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotextiles and Geomembranes, 43(6), 515-523. https://doi.org/10.1016/j.geotexmem.2015.05.004

Consoli, N. C., Bassani, M. A. A., & Festugato, L. (2010). Effect of fiber-reinforcement on the strength of cemented soils. Geotextiles and Geomembranes, 28(4), 344-351. https://doi.org/10.1016/j.geotexmem.2010.01.005

Correia, A. A., Oliveira, P. J. V., & Custódio, D. G. (2015). Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotextiles and Geomembranes, 43(2), 97-106. https://doi.org/10.1016/j.geotexmem.2014.11.008

Cristelo, N., Cunha, V. M., Dias, M., Gomes, A. T., Miranda, T., & Araújo, N. (2015). Influence of discrete fibre reinforcement on the uniaxial compression response and seismic wave velocity of a cement-stabilised sandy-clay. Geotextiles and Geomembranes, 43(1), 1-13. https://doi.org/10.1016/j.geotexmem.2014.11.007

Dabai, M. U., Muhammad, C., Bagudo, B. U., & Musa, A. (2009). Studies on the effect of rice husk ash as cement admixture. Nigerian Journal of Basic and Applied Sciences, 17(2), 252-256. https://doi.org/10.4314/njbas.v17i2.49917

Della, V. P., Kühn, I., & Hotza, D. (2002). Rice husk ash as an alternate source for active silica production. Materials Letters, 57(4), 818-821. https://doi.org/10.1016/S0167-577X(02)00879-0

Eberemu, A. O., Tukka, D. D., & Osinubi, K. J. (2014). Potential Use of Rice Husk Ash in the Stabilization and Solidification of Lateritic Soil Contaminated with Tannery Effluent. In Geo-Congress 2014: Geo-characterization and Modeling for Sustainability (pp. 2263-2272). https://doi.org/10.1061/9780784413272.221

Fatahi, B., & Khabbaz, H. (2012). Mechanical characteristics of soft clay treated with fibre and cement. Geosynthetics International. https://doi.org/10.1680/gein.12.00012

Festugato, L., Menger, E., Benezra, F., Kipper, E. A., & Consoli, N. C. (2017). Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotextiles and Geomembranes, 45(1), 77-82. https://doi.org/10.1016/j.geotexmem.2016.09.001

Fu, R., Baudet, B. A., Madhusudhan, B. N., & Coop, M. R. (2018). A comparison of the performances of polypropylene and rubber fibers in completely decomposed granite. Geotextiles and Geomembranes, 46(1), 22-28. https://doi.org/10.1016/j.geotexmem.2017.09.004

Ghorbani, A., & Forouzesh, K. (2010). Improving mechanical properties of clay using cement and fly ash and reinforced with polypropylene fibers, in Proc. of the 4th International Conference on Geotechnical Engineering and Soil Mechanics, November 2-3, 2010, Tehran, Iran. Paper No. 2(CATKAV)250.

Ghorbani, A., & Hasanzadehshooiili, H. (2017). A novel solution for ground reaction curve of tunnels in elastoplastic strain softening rock masses. Journal of Civil Engineering and Management, 23(6), 773-786. https://doi.org/10.3846/13923730.2016.1271010

Ghorbani, A., & Hasanzadehshooiili, H. (2018). Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing. Soils and foundations, 58(1), 34-49. https://doi.org/10.1016/j.sandf.2017.11.002

Ghorbani, A., Hasanzadehshooiili, H., & Sadowski, Ł. (2018). Neural Prediction of Tunnels’ Support Pressure in Elasto-Plastic, Strain-Softening Rock Mass. Applied Sciences, 8(5), 841. https://doi.org/10.3390/app8050841

Ghorbani, A., Hasanzadehshooiili, H., Ghamari, E., & Medzvieckas, J. (2014). Comprehensive three dimensional finite element analysis, parametric study and sensitivity analysis on the seismic performance of soil– micropile-superstructure interaction. Soil Dynamics and Earthquake Engineering, 58, 21-36. https://doi.org/10.1016/j.soildyn.2013.12.001

Ghorbani, A., Hasanzadehshooiili, H., Karimi, M., Daghigh, Y., & Medzvieckas, J. (2015). Stabilization of problematic silty sands using microsilica and lime. The Baltic Journal of Road and Bridge Engineering 10(1): 61-70. https://doi.org/10.3846/bjrbe.2015.08

Giustolisi, O., & Savic, D. A. (2006). A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics, 8(3), 207-222. https://doi.org/10.2166/hydro.2006.020b

Hamidi, A., & Hooresfand, M. (2013). Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36, 1-9. https://doi.org/10.1016/j.geotexmem.2012.10.005

Hashemi, M. A., Massart, T. J., & François, B. (2018). Experimental characterisation of clay-sand mixtures treated with lime. European Journal of Environmental and Civil Engineering, 22(8), 962-977. https://doi.org/10.1080/19648189.2016.1229228

Ismail, M. S., & Waliuddin, A. M. (1996). Effect of rice husk ash on high strength concrete. Construction and building materials, 10(7), 521-526.

Jauberthie, R., Rendell, F., Tamba, S., & Cissé, I. K. (2003). Properties of cement— rice husk mixture. Construction and building Materials, 17(4), 239-243. https://doi.org/10.1016/S0950-0618(03)00005-9

Jiang, H., Cai, Y., & Liu, J. (2010). Engineering properties of soils reinforced by short discrete polypropylene fiber. Journal of Materials in civil Engineering, 22(12), 1315-1322. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000129

Kumar, A., & Gupta, D. (2016). Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures. Geotextiles and Geomembranes, 44(3), 466-474. https://doi.org/10.1016/j.geotexmem.2015.07.010

Kumar, P. C., Palli, M. R., & Patnaikuni, I. (2011). Replacement of Cement with Rice Husk Ash in Concrete. In Advanced Materials Research (Vol. 295, pp. 481-486). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMR.295-297.481

Linfa, Y., Pendleton, R. L., & Jenkins, C. H. M. (1998). Interface morphologies in polyolefin fiber reinforced concrete composites. Composites Part A: Applied Science and Manufacturing, 29(5-6), 643-650. https://doi.org/10.1016/S1359-835X(97)00114-0

Mirzababaei, M., Miraftab, M., Mohamed, M., & McMahon, P. (2012). Unconfined compression strength of reinforced clays with carpet waste fibers. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 483-493. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000792

Mirzababaei, M., Mohamed, M. H., Arulrajah, A., Horpibulsuk, S., & Anggraini, V. (2018). Practical approach to predict the shear strength of fibre-reinforced clay. https://doi.org/10.1680/jgein.17.00033

Mtallib, M. O. A., & Bankole, G. M. (2011). Improvement of Index Properties and Compaction Characteristics of Lime Stabilized Tropical Lateritic Clays with Rice Husk Ash(RHA) Admixtures. Electronic Journal of Geotechnical Engineering, 16.

Muntohar, A. S., & Hantoro, G. (2000). Influence of rice husk ash and lime on engineering properties of a clayey subgrade. Electronic Journal of Geotechnical Engineering, 5, 1-9.

Muntohar, A. S., Widianti, A., Hartono, E., & Diana, W. (2012). Engineering properties of silty soil stabilized with lime and rice husk ash and reinforced with waste plastic fiber. Journal of Materials in Civil Engineering, 25(9), 1260-1270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000659

Nair, D. G., Fraaij, A., Klaassen, A. A., & Kentgens, A. P. (2008). A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research, 38(6), 861-869. https://doi.org/10.1016/j.cemconres.2007.10.004

Nair, D. G., Jagadish, K. S., & Fraaij, A. (2006). Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing. Cement and Concrete Research, 36(6), 1062-1071. https://doi.org/10.1016/j.cemconres.2006.03.012

Nikoo, M., Torabian Moghadam, F., & Sadowski, Ł. (2015). Prediction of concrete compressive strength by evolutionary artificial neural networks. Advances in Materials Science and Engineering, 2015. https://doi.org/10.1155/2015/849126

Olgun, M. (2013). Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20(4), 263-275. https://doi.org/10.1680/gein.13.00016

Oliveira, P. V., Correia, A. A. S., Teles, J. M. N. P. C., & Custódio, D. G. (2016). Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynthetics International, 23(3), 171-182. https://doi.org/10.1680/jgein.15.00040

Pande, A. M., & Makarande, S. G. (2013). Effect of rice husk ash on concrete. International Journal of Engineering Research and Applications (IJERA) ISSN, 2248-9622.

Plé, O., & Lê, T. N. H. (2012). Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay. Geotextiles and Geomembranes, 32, 111-116. https://doi.org/10.1016/j.geotexmem.2011.11.004

Rezania, M., Faramarzi, A., & Javadi, A. A. (2011). An evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacement. Engineering Applications of Artificial Intelligence, 24(1), 142-153. https://doi.org/10.1016/j.engappai.2010.09.010

Rios, S., Viana da Fonseca, A., & Baudet, B. A. (2012). Effect of the porosity/ cement ratio on the compression of cemented soil. Journal of geotechnical and geoenvironmental engineering, 138(11), 1422-1426. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000698

Sabat, A. K. (2012). Effect of polypropylene fiber on engineering properties of rice husk ash–lime stabilized expansive soil. Electronic Journal of Geotechnical Engineering, 17, 651-660.

Sadowski, Ł., & Hoła, J. (2015). ANN modeling of pull-off adhesion of concrete layers. Advances in Engineering Software, 89, 17-27. https://doi.org/10.1016/j.advengsoft.2015.06.013

Silitonga, E., Levacher, D., & Mezazigh, S. (2010). Utilization of fly ash for stabilization of marine dredged sediments. European Journal of Environmental and Civil Engineering, 14(2), 253-265. https://doi.org/10.1080/19648189.2010.9693216

Silva dos Santos, A. P., Consoli, N. C., Heineck, K. S., & Coop, M. R. (2009). High-pressure isotropic compression tests on fiber-reinforced cemented sand. Journal of Geotechnical and Geoenvironmental Engineering, 136(6), 885-890. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000300

Sivapullaiah, P. V., Subba Rao, K. S., & Gurumurthy, J. V. (2004). Stabilisation of rice husk ash for use as cushion below foundations on expansive soils. Proceedings of the Institution of Civil Engineers-Ground Improvement, 8(4), 137-149. https://doi.org/10.1680/grim.2004.8.4.137

Sun, W., Chen, H., Luo, X., & Qian, H. (2001). The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete. Cement and Concrete Research, 31(4), 595-601. https://doi.org/10.1016/S0008-8846(00)00479-8

Tang, C. S., Shi, B., Cui, Y. J., Liu, C., & Gu, K. (2012). Desiccation cracking behavior of polypropylene fiber–reinforced clayey soil. Canadian Geotechnical Journal, 49(9), 1088-1101. https://doi.org/10.1139/t2012-067

Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002

Tripathi, D. R., & Yadu, L. (2013). Bearing Capacity of Square Footing on Soft Soil Stabilized with Rice Husk Ash–An Experimental Study. In International Conference on Emerging Trends in Engineering and Technology (ICETET’2013) Dec (pp. 7-8).

Vakili, A. H., Ghasemi, J., bin Selamat, M. R., Salimi, M., & Farhadi, M. S. (2018). Internal erosional behaviour of dispersive clay stabilized with lignosulfonate and reinforced with polypropylene fiber. Construction and Building Materials, 193, 405-415. https://doi.org/10.1016/j.conbuildmat.2018.10.213

Yi, X. W., Ma, G. W., & Fourie, A. (2015). Compressive behaviour of fibre-reinforced cemented paste backfill. Geotextiles and Geomembranes, 43(3), 207-215. https://doi.org/10.1016/j.geotexmem.2015.03.003

Yilmaz, Y. (2009). Experimental investigation of the strength properties of sand–clay mixtures reinforced with randomly distributed discrete polypropylene fibers. Geosynthetics International, 16(5), 354-363. https://doi.org/10.1680/gein.2009.16.5.354

Yin, C. Y., Mahmud, H. B., & Shaaban, M. G. (2006). Stabilization/solidification of lead-contaminated soil using cement and rice husk ash. Journal of hazardous materials, 137(3), 1758-1764. https://doi.org/10.1016/j.jhazmat.2006.05.013

Downloads

Published

21.12.2018

How to Cite

Ghorbani, A., Salimzadehshooiili, M., Medzvieckas, J., & Kliukas, R. (2018). Strength Characteristics of Cement-Rice Husk Ash Stabilised Sand-Clay Mixture Reinforced with Polypropylene Fibers. The Baltic Journal of Road and Bridge Engineering, 13(4), 447-474. https://doi.org/10.7250/bjrbe.2018-13.428