Load transfer-crack width relation of non-dowelled jointed plain concrete short slabs
Abstract
Keywords: |
aggregate interlock; concrete pavements; crack width; joints; load transfer; short slabs
|
Full Text: |
References
Achurra, S. (2009). Procedure to measure and control of the superficial friction in Chilean pavements (in Spanish): MSc Thesis. Catholic University of Chile, Santiago, Chile.
Brink, A., Horak, E., Perrie, B., Strauss, P., & Visser, A. (2004). Improvement of aggregate interlock equation used in cnc- Pave. Proceedings of the 23rd Southern African Transport Conference. Pretoria, South Africa.
Buch, N., Frabizzio, M. A., & Hiller, J. E. (2000). Impact of coarse aggregates on transverse crack performance in jointed concrete pavements. ACI Materials Journal, 97(3), 325-332.
Colley, B. E., & Humphrey, H. M. (1967). Aggregate interlock at joints in concrete pavements. Bulletin HRB National Research Council, 189, 1-18.
Covarrubias, J. P. (2011). Design of concrete slabs with optimized geometry. Proceedings of 2nd International Conference on Best Practices for Concrete Pavements. Florianopolis, Brazil.
Covarrubias, J. P. (2012). Design of concrete pavement with optimized slab geometry. Revista Ingeniería de Construcción 27(3), 181-197.
Davids, W. G., & Mahoney, J. P. (1999). Experimental verification of rigid pavement joint load transfer modeling with EverFE. Transportation Research Record, 1684, 81-89. https://doi.org/10.3141/1684-10
Hanekom, A. C., Horak, E.; Visser, A. T. (2001). Aggregate interlock load transfer efficiency at joints in concrete pavements during dynamic loading. Proceedings of the 7th International Conference on Concrete Pavements. Orlando FL, USA.
Hanekom, A. C., Horak, E.; Visser, A. T. (2003). Comparison of South African and American aggregate interlock efficiency at concrete pavement joints. Proceedings of the 16th ASCE Engineering Mechanics Conference. Seattle, USA.
Houben, L. J. M. (2010). Transversal cracking in jointed plain concrete pavements for Dutch climatic conditions. Proceedings of the 7th International DUT-Workshop on Design and Performance of Sustainable and Durable Concrete Pavement. Carmona, Spain.
Ioannides, A. M. (1984). Analysis of slabs-on-grade for a variety of loading and support conditions: PhD Thesis. University of Illinois, Urbana-Champaign, USA.
Ioannides, A. M., & Korovesis, G. (1990). Aggregate interlock: a pure-shear load transfer mechanism. Transportation Research Record, 1286, 14-24.
Jensen, E., & Hansen, W. (2001). Mechanism of load transfercrack width relation in JPCP: influence of coarse aggregate properties. Proceedings of the 7th International Conference on Concrete Pavements. Orlando, USA.
Perez, S., & Van Geem, C. (2010). Evaluation by FWD and faultimeter of concrete slabs stability. 6th European FWD User Group Meeting Structural Condition Assessment. Sterrebeek, Belgium.
Perez, S., Beeldens, A., Maeck, J., Van Geem, C., Vanelstraete, A., Degrande, G., Lombaert, G., & De Winne, P. (2009). Evaluation of the use of FWD and Faultimeter in the stabilizations of concrete slabs (in French). Proceedings of the 21st Belgian Congress of Roads. Gent, Belgium.
Pradena, M., & Houben, L. J. M. (2014). Sustainable pavements: influence of the saw-cutting method on the performance of JPCPs. Proceedings of the 14th International Multidisciplinary Scientific GeoConference on Nano, Bio and Green Technology for a Sustainable Future. Albena, Bulgaria. https://doi.org/10.5593/SGEM2014/B62/S26.043
Pradena, M., & Houben, L. J. M. (2015). Analysis of the stress relaxation in plain concrete pavements. Baltic Journal of Road and Bridge Engineering, 10(1), 46-53. https://doi.org/10.3846/bjrbe.2015.06
Pradena, M., & Houben, L. J. M. (2016). Sustainable pavements: correction factor for the modelling of crack width at joints of short slabs. Proceedings of the 16th International Multidisciplinary Scientific GeoConference on Nano, Bio and Green Technology for a Sustainable Future. Albena, Bulgaria.
Pradena, M., & Houben, L. J. M. (2017). Influence of early-age concrete behaviour on concrete pavements performance. Journal Civil Engineer (Građevinar), 69(9), 875-883.
Roesler, J. R., Cervantes, V. G., & Amirkhanian, A. N. (2012). Accelerated performance testing of concrete pavement with short slabs. International Journal of Pavement Engineering, 13(6), 494-507. https://doi.org/10.1080/10298436.2011.575134
Ruiz, J. M., Rasmussen, R. O., Chang, G. K., Dick, J. C., & Nelson, P. K. (2005). Computer-based guidelines for concrete pavements, volume II: design and construction guidelines and HIPERPAV II user’s manual. Report FHWA–HRT–04–122, Federal Highway Administration. McLean, VA.
Salsilli, R., Wahr, C., Delgadillo, R., Huerta, J., & Sepúlveda, P. (2013). Design method for concrete pavements with short slabs based on Westergaard’s equations and Dimensional analysis. Proceedings of the 92nd Transportation Research Board Annual Meeting. Washington DC, USA.
Salsilli, R., Wahr, C., Delgadillo, R., Huerta, J., & Sepúlveda, P. (2015). Field performance of concrete pavements with short slabs and design procedure calibrated for Chilean conditions. International Journal of Pavement Engineering, 16(4), 363-379. https://doi.org/10.1080/10298436.2014.943129
Walraven, J. C. (1994). Rough cracks subjected to earthquake loading. Journal of Structural Engineering, 120(5), 1510-1524. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:5(1510)
DOI: 10.3846/bjrbe.2018.388
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Mauricio Pradena, Lambert Houben

This work is licensed under a Creative Commons Attribution 4.0 International License.