Mixture Strength Class and Slab Dimensions’ Effect on The Precast Concrete Pavement Structural Performance

Authors

DOI:

https://doi.org/10.7250/bjrbe.2019-14.452

Keywords:

concrete mixture design, concrete slab, modular pavement, pavement design, precast concrete pavement (PCP)

Abstract

Mechanical properties and slab dimensions of concrete are the major parameters based on which the performance of concrete pavement structures is predicted. Precast concrete pavement, as one of the most common modular pavement type, is the advanced next-generation technology characterised as high quality, durable, quickly built and easily maintained. The service conditions of precast concrete pavement (traffic loading and environmental effects) are similar to the conventional cast-in-place jointed plain concrete pavement. Thus, the precast concrete pavement structural design is similar to that of jointed plain concrete pavement. There are several concepts for the design of concrete pavement structure. However, they are based on different distress evaluation and critical stresses estimation methods assuming the slab dimensions that for jointed plain concrete pavement are within the wide joint spacing range from 3.5−6.0 m. The objective of this paper is to analytically evaluate the effect of concrete mixture mechanical properties on the thickness and dimensions of precast concrete pavement slab. Also, define the minimal thickness of precast concrete slab dependent on slab dimensions and concrete mixture mechanical properties elastic modulus and tensile splitting strength. The analysis is based on bearing capacity, performance and fatigue boundary conditions as reported by semi-probabilistic pavement design method Richtlinien für die rechnerische Dimensionierung von Betondecken im Oberbau von Verkehrsflächen RDO Beton 09. Considering that, concrete mixture has significant effects on pavement performance; the composition of concrete was also discussed in this paper.  The optimal slab dimensions, concrete layer thickness, and base layer type is suggested in this paper. The outcomes of this analysis apply to the production of precast concrete pavement slabs.

References

AC 150/5320-6F Airport Pavement Design and Evaluation

American Association of State Highway and Transportation Officials (AASHTO) (1993). Guide for Design of Pavement Structures.

American Association of State Highway and Transportation Officials (AASHTO) (2008). Mechanistic-Empirical Pavement Design Guide. A Manual of Practice.

American Association of State Highway and Transportation Officials (AASHTO) (2015). Mechanistic-Empirical Pavement Design Guide-A Manual of Practice.

American Concrete Institute Committee 325 (2002). Guide for design of jointed concrete pavements for streets and local roads.

Bradbury, R. D. (1938). Reinforced Concrete Pavements. Washington, DC.

Breyer, G., & Kurzfassung, W. (2004). Entscheidungskriterien für den Bau von Betonfahrbahndecken in Österreich. Bet ónov é vozovky 2007 Betonfahrbahndecken 2007, 23. (in German)

Chang, C. M., Baladi, G. Y., & Wolff, T. F. (2001). Using pavement distress data to assess impact of construction on pavement performance. Transportation research record, 1761(1), 15-25. https://doi.org/10.3141/1761-03

Darter, M. I., Hall, K. T., & Kuo, C. M. (1995). Support under Portland cement concrete pavements (No. Project 1-30 FY'93)

Delatte, N. (2008). Concrete Pavement Design, Construction, and Performance. London, UK: Taylor & Francis Group.

Disfani, M. M., Arulrajah, A., Haghighi, H., Mohammadinia, A., & Horpibulsuk, S. (2014). Flexural beam fatigue strength evaluation of crushed brick as a supplementary material in cement stabilized recycled concrete aggregates. Construction and Building Materials, 68, 667-676. https://doi.org/10.1016/j.conbuildmat.2014.07.007

EN 12390-6 Testing hardened concrete – Part 6: Tensile splitting strength of test specimens.

EN 206 Concrete – Part 1: Specifications, performance, production and conformity.

Federal Highway Administration (2019). Technical Advisory: Concrete Pavement Joints (Vol. T 5040.30). Washington DC.

Goel, S., Singh, S. P., & Singh, P. (2012). Flexural fatigue strength and failure probability of self compacting fibre reinforced concrete beams. Engineering Structures, 40, 131-140. https://doi.org/10.1016/j.engstruct.2012.02.035

Graeff, A. G., Pilakoutas, K., Neocleous, K., & Peres, M. V. N. (2012). Fatigue resistance and cracking mechanism of concrete pavements reinforced with recycled steel fibres recovered from post-consumer tyres. Engineering Structures, 45, 385-395. https://doi.org/10.1016/j.engstruct.2012.06.030

Hesami, S., Ahmadi, S., & Nematzadeh, M. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building Materials, 53, 680-691. https://doi.org/10.1016/j.conbuildmat.2013.11.070

Huang, B., Wu, H., Shu, X., & Burdette, E. G. (2010). Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Construction and Building Materials, 24(5), 818-823. https://doi.org/10.1016/j.conbuildmat.2009.10.025

Ibrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Construction and Building Materials, 50, 524-529. https://doi.org/10.1016/j.conbuildmat.2013.09.022

Isaia, G. C., Gastaldini, A. L. G., & Moraes, R. (2003). Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cement and concrete composites, 25(1), 69-76. https://doi.org/10.1016/S0958-9465(01)00057-9

Jalal, M., Pouladkhan, A., Harandi, O. F., & Jafari, D. (2015). Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Construction and Building Materials, 94, 90-104. https://doi.org/10.1016/j.conbuildmat.2015.07.001

Jung, Y. S., & Zollinger, D. G. (2007). Design and Construction Transition Guidelines for Concrete Pavement. Texas Transportation Institute, Texas A & M University System.

Khazanovich, L., Darter, M. I., & Yu, H. T. (2004). Mechanistic-empirical model to predict transverse joint faulting. Transportation Research Record, 1896(1), 34-45. https://doi.org/10.3141/1896-04

Klcriber, F. W. (1982). The Effects of Air Content, Water-Cement Ratio, and Aggregate Type on the Flexural Fatigue Strength of Plain Concrete. Special Publication, 75, 111-132. https://doi.org/10.14359/6403

Kleizienė, R., Vaitkus, A., & Čygas, D. (2012). The Analysis of Concrete Pavement Application Possibilities for Road Pavement Structures. The XXVIII International Baltic Road Conference, 27-30 August 2017 in Tallinn, Estonia, 9 p.

Kohler, E., du Plessis, L., Smith, P. J., Harvey, J., & Pyle, T. (2007, November). Precast concrete pavements and results of accelerated traffic load test. In International Conference on Optimizing Paving Concrete Mixtures and Accelerated Concrete Pavement Construction and Rehabilitation. Atlanta, Georgia.

Kosmatka, S. H., Kerkhoff, B., & Panarese, W. C. (2002). Design and control of concrete mixtures (Vol. 5420, pp. 60077-1083). Skokie, IL: Portland Cement Association.

KPT SDK 19 Automobilių kelių standartizuotų dangų konstrukcijų projektavimo taisyklės. Lietuvos automobilių kelių direkcija prie Susisiekimo Ministerijos (LAKD) (in Lithuanian)

Li, H., Zhang, M. H., & Ou, J. P. (2007). Flexural fatigue performance of concrete containing nano-particles for pavement. International Journal of fatigue, 29(7), 1292-1301. https://doi.org/10.1016/j.ijfatigue.2006.10.004

Mai, S. H., Le-Corre, F., Forêt, G., & Nedjar, B. (2012). A continuum damage modeling of quasi-static fatigue strength of plain concrete. International Journal of Fatigue, 37, 79-85. https://doi.org/10.1016/j.ijfatigue.2011.10.006

Mallick, R. B., & El-Korchi, T. (2013). Pavement engineering: principles and practice. CRC Press.

Naik, T. R., Ramme, B. W., & Tews, J. H. (1994). Use of high volumes of class C and class F fly ash in concrete. Cement, Concrete and Aggregates, 16(1), 12-20. https://doi.org/10.1520/CCA10556J

Naik, T. R., Ramme, B. W., Kraus, R. N., & Siddique, R. (2003). Long-Term Performance of High-Volume Fly Ash. ACI Materials Journal, 100(2), 150-155.

Nazari, A., & Riahi, S. (2012). The effects of SnO2 nanoparticles on physical and mechanical properties of high-strength self-compacting concrete. Journal of Experimental Nanoscience, 7(5), 559-577. https://doi.org/10.1080/17458080.2010.543991

Nehdi, M., Pardhan, M., & Koshowski, S. (2004). Durability of self-consolidating concrete incorporating high-volume replacement composite cements. Cement and Concrete Research, 34(11), 2103-2112. https://doi.org/10.1016/j.cemconres.2004.03.018

Phoo-ngernkham, T., Chindaprasirt, P., Sata, V., Hanjitsuwan, S., & Hatanaka, S. (2014). The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Materials & Design, 55, 58-65. https://doi.org/10.1016/j.matdes.2013.09.049

Rangelov, M., Nassiri, S., Haselbach, L., & Englund, K. (2016). Using carbon fiber composites for reinforcing pervious concrete. Construction and Building Materials, 126, 875-885. https://doi.org/10.1016/j.conbuildmat.2016.06.035

Richtlinien für die rechnerische Dimensionierung von Betondecken im Oberbau von Verkehrsflächen RDO Beton 09 (in German)

Shannag, M. J. (2000). High strength concrete containing natural pozzolan and silica fume. Cement and concrete composites, 22(6), 399-406. https://doi.org/10.1016/S0958-9465(00)00037-8

Smith, K. D., Peshkin, D. G., Darter, M. I., Mueller, A. L., & Carpenter, S. H. (1990). Performance of Jointed Concrete Pavements, Volume I, Evaluation of Concrete Pavement Performance aned Design Features. Federal Highway Administration, Report No. FHWA-RD-89-136, Washington, DC.

Smith, P., & Snyder, M. B. (2017). Manual for jointed precast concrete pavement. STR 2.05.05:2005 Design of Concrete and Reinforced Concrete Construction.

Tayabji, S., & Tyson, S. (2014). Precast concrete pavement innovations, performance and best practices. Concrete International, 39(4), 41–46.

Tayabji, S., Ye, D., & Buch, N. (2013). Precast concrete pavement technology. Transportation Research Board. https://doi.org/10.17226/22710

Tayabji, S., Ye, D., & Buch, N. (2013). Precast concrete pavements: Technology overview and technical considerations. PCI journal, 58(1). https://doi.org/10.15554/pcij.01012013.112.128

TL Beton-StB 07 Technische Lieferbedingungen für Baustoffe und Baustoffgemische für Tragschichten mit hydraulischen Bindemitteln und Fahrbahndecken aus Beton (in German)

Vaitkus, A., Gražulytė, J., Kleizienė, R., Vorobjovas, V., & Šernas, O. (2019). Concrete Modular Pavements–Types, Issues and Challenges. The Baltic Journal of Road and Bridge Engineering, 14(1), 80-103. https://doi.org/10.7250/bjrbe.2019-14.434

Villaret, S., Kiehne, A., Riwe, A., & Villaret, K. (2008). Entwicklung eines Finite Elemente Modells für die rechnerische Dimensionierung von Straßen gemäß RDO Beton. (in German)

Walls III, J., & Smith, M. R. (1998). Life-cycle cost analysis in pavement design-interim technical bulletin (No. FHWA-SA-98-079)

Wojtkiewicz, S. F., Khazanovich, L., Gaurav, G., & Velasquez, R. (2010). Probabilistic numerical simulation of pavement performance using MEPDG. Road Materials and Pavement Design, 11(2), 291-306. https://doi.org/10.1080/14680629.2010.9690277

Wood, S. L. (1992). Evaluation of the long-term properties of concrete. Skokie: Portland Cement Association

Zanuy, C., de la Fuente, P., & Albajar, L. (2007). Effect of fatigue degradation of the compression zone of concrete in reinforced concrete sections. Engineering structures, 29(11), 2908-2920. https://doi.org/10.1016/j.engstruct.2007.01.030

ZTV Beton-StB 07 Zusätzliche Technische Vertragsbedingungen und Richtlinien für den Bau von Tragschichten mit hydraulischen Bindemitteln und Fahrbahndecken aus Beton (in German)

Downloads

Published

26.09.2019

How to Cite

Vaitkus, A., Kleizienė, R., Vorobjovas, V., & Čygas, D. (2019). Mixture Strength Class and Slab Dimensions’ Effect on The Precast Concrete Pavement Structural Performance. The Baltic Journal of Road and Bridge Engineering, 14(3), 443-471. https://doi.org/10.7250/bjrbe.2019-14.452