Experimental Study of Railway Trackbed Pressure Distribution Under Dynamic Loading

Authors

DOI:

https://doi.org/10.7250/bjrbe.2019-14.455

Keywords:

ballast consolidation, load cell, pressure distribution, pressure measurement, railway ballast, tamping

Abstract

Reliable and durable operation of the railway track under the dynamic load of the rolling stock depends considerably on the ability of the ballast layer to get the load from the sleepers and distribute it to the subgrade. In this paper, the experimental study of the distribution properties of the ballast layer under the impact of dynamic loading depending on the density of the ballast layer is carried out. The ballast behaviour during load cycles is estimated by pressure measurements at the ballast prism base along the axis of a sleeper with simultaneous video observation of the ballast particles movement through transparent sidewalls of the box with crushed stone. Measurements of pressure distribution are carried out with the developed microcontroller system of measurements and developed load cells. The system allows performing multi-point measurements of stress in combination with measurements of acceleration and photogrammetry. The results of measurements showed a significant effect of the ballast layer consolidation on the distribution of stresses under the sleeper. The performed research opens up opportunities for practical improvement of the existing types of track structures and the technology of the ballast layer tamping in terms to provide the optimal conditions for the ballast layer operation.

References

Aikawa, A. (2015). Dynamic characterisation of a ballast layer subject to traffic impact loads using three-dimensional sensing stones and a special sensing sleeper. Construction and Building Materials, 92, 23-30. https://doi.org/10.1016/j.conbuildmat.2014.06.005

Aursudkij, B. (2007). A laboratory study of railway ballast behaviour under traffic loading and tamping maintenance (Doctoral dissertation, University of Nottingham).

Beben, D. (2017). The Role of Backfill Quality on Corrugated Steel Plate Culvert Behaviour. Baltic Journal of Road & Bridge Engineering (Baltic Journal of Road & Bridge Engineering), 12(1), 1-11. https://doi.org/10.3846/bjrbe.2017.01

Berghold, A. (2016). Wirkungsweise von unterschiedlichen Gleisschotterarten mit und ohne Schwellenbesohlungen. ZEVrail, 2016(A20420E), 45-52. (in German)

Čebašek, T. M., Esen, A. F., Woodward, P. K., Laghrouche, O., & Connolly, D. P. (2018). Full scale laboratory testing of ballast and concrete slab tracks under phased cyclic loading. Transportation Geotechnics, 17, 33-40. https://doi.org/10.1016/j.trgeo.2018.08.003

Esveld, C. (2001). Modern railway track (Vol. 385). Zaltbommel: MRT-productions.

Fendrich, L., & Fengler, W. (Eds.). (2014). Handbuch Eisenbahninfrastruktur. Springer-Verlag. https://doi.org/10.1007/978-3-642-30021-9 (in German)

Fischer, S. (2017). Breakage test of railway ballast materials with new laboratory method. Periodica Polytechnica Civil Engineering, 61(4), 794-802. https://doi.org/10.3311/PPci.8549

Führer, G. (1978). Oberbauberechnung. VEB, Verlag für erkehrswesen, Berlin. 151 pp. (in German).

Gerber, U., & Fengler, W. (2010). Setzungsverhalten des Schotters. ETR. Eisenbahntechnische Rundschau, 59(4), 170-175. (in German)

Gerber, U., Sysyn, M., Zarour, J., & Nabochenko, O. (2019). Stiffness and strength of structural layers from cohesionless material. Archives of Transport, 49(1), pp. 59-68. https://doi.org/10.5604/01.3001.0013.2776

Ižvolt, L., Harusinec, J., & Šmalo, M. (2018). Optimisation of transition areas between ballastless track and ballasted track in the area of the tunnel turecky vrch. Communications-Scientific letters of the University of Zilina, 20(3), 67-76.

Ižvolt, L., Šestáková, J., & Šmalo, M. (2016). Analysis of results of monitoring and prediction of quality development of ballasted and ballastless track superstructure and its transition areas. Communications-Scientific letters of the University of Zilina, 18(4), 19-29.

Ižvolt, L., Šestáková, J., & Šmalo, M. (2017, September). Tendencies in the development of operational quality of ballasted and ballastless track superstructure and transition areas. In IOP Conference Series: Materials Science and Engineering (Vol. 236, No. 1, p. 012038). IOP Publishing. https://doi.org/10.1088/1757-899x/236/1/012038

Juhász, E., & Fischer, S. (2019). Investigation of railroad ballast particle breakage. Pollack Periodica, 14(2), 3-14. https://doi.org/10.1556/606.2019.14.2.1

Kovalchuk, V. V., Kovalchuk, Y. Y., Sysyn, M. P., Stankevych, V. Z., & Petrenko, O. V. (2018). Estimation of carrying capacity of metallic corrugated structures of the type multiplate mp 150 during interaction with backfill soil. https://doi.org/10.15587/1729-4061.2018.123002

Kumar, N., Suhr, B., Marschnig, S., Dietmaier, P., Marte, C., & Six, K. (2019). Micro-mechanical investigation of railway ballast behavior under cyclic loading in a box test using DEM: effects of elastic layers and ballast types. Granular Matter, 21(4), 106. https://doi.org/10.1007/s10035-019-0956-9

Kumara, J. J., & Hayano, K. (2016). Deformation characteristics of fresh and fouled ballasts subjected to tamping maintenance. Soils and foundations, 56(4), 652-663. https://doi.org/10.1016/j.sandf.2016.07.006

Lichtberger, B. (2005). Track Compendium: Formation, Permanent Way, Maintenance. Economics, 1.

Liu, Q., Lei, X., Rose, J. G., & Purcell, M. L. (2017, April). Pressure Measurements at the Tie-Ballast Interface in Railroad Tracks Using Granular Material Pressure Cells. In 2017 Joint Rail Conference. American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/JRC2017-2219

Liu, S., Huang, H., & Qiu, T. (2018). Evaluating Ballast Stabilization during Initial Compaction Phase. In Railroad Ballast Testing and Properties. ASTM International. https://doi.org/10.1520/STP160520170032

Nabochenko, O., Sysyn, M., & Kovalchuk, V. (2019). Studying the railroad track geometry deterioration as a result of an uneven subsidence of the ballast layer. Eastern-European Journal of Enterprise Technologies, 97(1), 50-59. https://doi.org/10.15587/1729-4061.2019.154864

Plasek, O., Hruzikova, M., Svoboda, R., & Bilek, J. (2014). Under sleeper pads in railway track. Communications - Scientific Letters of the University of Zilina, 16(4), pp. 27-34.

Plasek, O., Hruzikova, M., Svoboda, R., & Vendel, J. (2015). Influence of under sleeper pads on track quality. AKUSTIKA, 23, 28-33.

Ramūnas, V., Vaitkus, A., Laurinavičius, A., Čygas, D., & Šiukščius, A. (2017). Prediction of lifespan of railway ballast aggregate according to mechanical properties of it. The Baltic Journal of Road and Bridge Engineering, 12(3), 203-209. https://doi.org/10.3846/bjrbe.2017.25

Steiner, E., Kuttelwascher, C., & Prager, G. (2014). Lastabtragung im Schotterbett – Änderungseffekte durch Konsolidierung und Bahnbetrieb. ETR – Eisenbahntechnische Rundschau, 12, pp.72-76. (in German)

Sysyn, M., Gerber, U., Gruen, D., Nabochenko, O., & Kovalchuk, V. (2019). Modelling and vehicle based measurements of ballast settlements under the common crossing. Eur Transp Int J Transp Econ Eng Law, 71, 1-25.

Sysyn, M., Gerber, U., Kovalchuk, V., & Nabochenko, O. (2018). The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport, 47. https://doi.org/10.5604%2F01.3001.0012.6512

Sysyn, M., Kovalchuk, V., Gerber, U., Nabochenko, O., & Parneta, B. (2019). Laboratory Evaluation of Railway Ballast Consolidation by the Non-Destructive Testing. Communications-Scientific letters of the University of Zilina, 21(2), 81-88.

Sysyn, M., Nabochenko, O., Kovalchuk, V., & Gerber, U. (2019). Evaluation of railway ballast layer consolidation after maintenance works.

Watts, T. J., Rose, J. G., & Russell, E. J. (2018, April). Relationships Between Wheel/Rail Surface Impact Loadings and Correspondingly Transmitted Tie/ Ballast Impact Pressures for Revenue Train Operations. In 2018 Joint Rail Conference. American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/JRC2018-6184

Downloads

Published

27.12.2019

How to Cite

Sysyn, M., Kovalchuk, V., Nabochenko, O., Kovalchuk, Y., & Voznyak, O. (2019). Experimental Study of Railway Trackbed Pressure Distribution Under Dynamic Loading. The Baltic Journal of Road and Bridge Engineering, 14(4), 504-520. https://doi.org/10.7250/bjrbe.2019-14.455