Determining Soil Moisture Content and Material Properties with Dynamic Cone Penetrometer

Authors

DOI:

https://doi.org/10.7250/bjrbe.2020-15.511

Keywords:

dynamic cone penetrometer (DCP), Panda2, railway embankments, soil moisture, soil shear strength, substructure, triaxial test

Abstract

This study utilised static triaxial and dynamic cone penetration tests to examine the identification of changes in strength in soil materials as a result of an increase in moisture content. The applicability of a light dynamic cone penetrometer device in railway environments was also studied. On a broader scale, the aim was to find an investigation method suited to field locations that identify low-quality or persistently moist materials directly from the structure. The triaxial tests found an apparent increase in shear strength when the water content dropped below 7%. Based on the series of laboratory tests, the dynamic cone penetrometer reacted strongly to material density, but the impact of moisture content was also evident. Furthermore, the results showed that dynamic cone resistance is a reasonably unfeasible metric for assessing the structural quality of materials consisting primarily of sand, due to the number of factors affecting the resistance. In the laboratory tests, the lowest dynamic cone resistances were measured in the material with the highest structural quality.

References

Abuel-Naga, H. M., Holtrigter, M., & Pender, M. J. (2011). Simple method for correcting dynamic cone penetration test results for rod friction. Géotechnique Letters, 1(3), 37-40. https://doi.org/10.1680/geolett.11.00012

Benz-Navarrete, M. A., Breul, P., & Moustan, P. (2019, November). Servo-Assisted and Computer-Controlled Variable Energy Dynamic Super Heavy Penetrometer. In Geotechnical Engineering in the XXI Century: Lessons learned and future challenges: Proceedings of the XVI Pan-American Conference on Soil Mechanics & Geotechnical Engineering (XVI PCSMGE), 17-20 November 2019, Cancun, Mexico (p. 65). IOS Press.

Benz-Navarrete, M. A., Escobar, E., Haddani, Y., Gourves, R., D’Aguiar, S. C., & Calon, N. (2014). Determination of Soil Dynamic Parameters by the Panda 3®: Railways Platform Case. In Proc. of the Second International Conference on Railway Technology: Research, Development & Maintenance”, Civil-Comp Press, Stirlingshire, UK, Paper (Vol. 56). https://doi.org/10.4203/ccp.104.56

Bolton, M. D., Gui, M. W., Garnier, J., Corte, J. F., Bagge, G., Laue, J., & Renzi, R. (1999). Centrifuge cone penetration tests in sand. Géotechnique, 49(4), 543-552. https://doi.org/10.1680/geot.1999.49.4.543

Brough, M. J., Ghataora, G. S., Stirling, A. B., Madelin, K. B., Rogers, C. D. F., & Chapman, D. N. (2003, August). Investigation of railway track subgrade. I: In-situ assessment. In Proc. of the Institution of Civil Engineers-Transport (Vol. 156, No. 3, pp. 145-154). Thomas Telford Ltd. https://doi.org/10.1680/tran.2003.156.3.145

Brough, M. J., Ghataora, G., Stirling, A. B., Madelin, K. B., Rogers, C. D., & Chapman, D. N. (2006, May). Investigation of railway track subgrade. Part 2: Case study. In Proc. of the Institution of Civil Engineers-Transport (Vol. 159, No. 2, pp. 83-92). Thomas Telford Ltd. https://doi.org/10.1680/tran.2006.159.2.83

Byun, Y. H., & Kim, D. J. (2020). In-situ modulus detector for subgrade characterisation. International Journal of Pavement Engineering, 1-11. https://doi.org/10.1080/10298436.2020.1743291

Byun, Y. H., Hong, W. T., & Lee, J. S. (2015). Characterisation of railway substructure using a hybrid cone penetrometer. Journal of Smart Structures & Systems, 15(4), 1085-1101. https://doi.org/10.12989/sss.2015.15.4.1085

Chaigneau, L., Gourves, R., & Boissier, D. (2000, February). Compaction control with a dynamic cone penetrometer. In Proc. of International Workshop on Compaction of Soils, Granulates & Powders, Innsbruck (pp. 103-109).

Escobar, E., Benz-Navarrete, M. A., Gourvès, R., Haddani, Y., Breul, P., & Chevalier, B. (2016). Dynamic Characterisation of the Supporting Layers in Railway Tracks Using the Dynamic Penetrometer Panda 3®. Procedia Engineering, 143, 1024-1033. https://doi.org/10.1016/j.proeng.2016.06.099

Gansonré, Y., Breul, P., Bacconnet, C., Benz, M., & Gourvès, R. (2019). Prediction of in-situ dry unit weight considering chamber boundary effects on lateritic soils using Panda® penetrometer. International Journal of Geotechnical Engineering, 1-7. https://doi.org/10.1080/19386362.2019.1698211

Haddani, Y., Breul, P., Saussine, G., Navarrete, M. A. B., Ranvier, F., & Gourvès, R. (2016). Trackbed Mechanical and Physical Characterisation using PANDA®/ Geoendoscopy Coupling. Procedia Engineering, 143, 1201-1209. https://doi.org/10.1016/j.proeng.2016.06.118

Kennedy, J. (2011). A full-scale laboratory investigation into railway track substructure performance and ballast reinforcement (Doctoral dissertation, Heriot-Watt University).

Langton, D. D. (1999). The Panda lightweight penetrometer for soil investigation and monitoring material compaction. Ground Engineering.

Lehtonen, I. (2011). Äärisademäärien muutokset Euroopassa maailmanlaajuisten ilmastomallien perusteella (in Finish)

Li, D., & Selig, E. T. (1995). Evaluation of railway subgrade problems. Transportation Research Record, 1489, 17-25.

Livneh, M. (2000). Friction correction equation for the dynamic cone penetrometer in subsoil strength testing. Transportation Research Record, 1714(1), 89-97. https://doi.org/10.3141/1714-12

MacRobert, C. J., Bernstein, G. S., & Nchabeleng, M. M. (2019). Dynamic Cone Penetrometer (DCP) Relative Density Correlations for Sands. Soils & Rocks, 42(2), 201-207. https://doi.org/10.28927/SR.422201

Morvan, M., & Breul, P. (2016). Optimisation of in-situ dry density estimation. In E3S Web of Conferences (vol. 9, p. 09002). EDP Sciences. https://doi.org/10.1051/e3sconf/20160909002

Ruosteenoja, K., Jylhä, K., & Kämäräinen, M. (2016). Climate projections for Finland under the RCP forcing scenarios. Geophysica, 51.

Scala, A. J. (1956). Simple methods of flexible pavement design using cone penetrometers. New Zealand Engineering, 11(2), 34–44.

Selig, E. T., & Waters, J. M. (1994). Track geotechnology and substructure management. Thomas Telford.

SFS-EN 13286-2:2011 Unbound and Hydraulically Bound Mixtures. Part 2: Test Methods for Laboratory Reference Density and Water Content. Proctor Compaction

SFS-ISO 17892-9:2018 Geotechnical Investigation and Testing. Laboratory Testing of Soil. Part 9: Consolidated Triaxial Compression Tests on Water Saturated Soils

Spagnoli, G. (2007). An empirical correlation between different dynamic penetrometers. The Electronic Journal of Geotechnical Engineering, 12.

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1-2), 123-138. https://doi.org/10.3354/cr00953

Vanags, C., Minasny, B., & McBratney, A. B. (2004, December). The dynamic penetrometer for assessment of soil mechanical resistance. In Proc. of the 3rd Australian New Zealand Soils Conference (pp. 5-9).

Downloads

Published

23.12.2020

How to Cite

Latvala, J., Luomala, H., & Kolisoja, P. (2020). Determining Soil Moisture Content and Material Properties with Dynamic Cone Penetrometer. The Baltic Journal of Road and Bridge Engineering, 15(5), 136-159. https://doi.org/10.7250/bjrbe.2020-15.511