An Efficient Contact Model for Rotating Mechanism Analysis and Design in Bridge Construction

Authors

DOI:

https://doi.org/10.7250/bjrbe.2021-16.515

Keywords:

bridge construction, contact behaviour, friction, optimal design, rotating mechanism, slide plate

Abstract

The rotation superstructure construction method is a widespread technique in bridge engineering. The critical issue for the successful application of this technique is the contact interface analysis and design for the rotating mechanism. A semi-analytical method predicated upon obtaining a uniform distribution of pressure on the slide plates within the interface is proposed. The surface design typically generates a nonlinear stress distribution. It leads to local damage and local asperity interlocking, which increase the contact friction dramatically during the rotation. In contrast, the proposed approach provides a surface that avoids stress concentrations and is expected to reduce the material cost of the slide plates. The proposed method is verified by the Finite Element Model. It can be used in a broad area involving contacting surface design, especially in the rotating mechanism design for bridge construction.

References

Abaqus, V. (2014). 6.14 Documentation. Dassault Systemes Simulia Corporation, 651, 6-2.

Banerjee, P. K., & Butterfield, R. (1981). Boundary element methods in engineering science 17, p. 578. London: McBarber, J. R., & Ciavarella, M. (2000). Contact mechanics. International Journal of Solids and Structures, 37(1-2), 29-43. https://doi.org/10.1016/ S0020-7683(99)00075-X

Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K., Erdemir, A., & Sumant, A. V. (2015). Macroscale superlubricity enabled by graphene nanoscroll formation. Science, 348(6239), 1118-1122. https://doi.org/10.1126/science.1262024

Brebbia, C. A., & Walker, S. (2016). Boundary element techniques in engineering. Elsevier.

Bush, A. W., Gibson, R. D., & Thomas, T. R. (1975). The elastic contact of a rough surface. Wear, 35(1), 87-111. https://doi.org/10.1016/0043-1648(75)90145-3

Ciavarella, M., Joe, J., Papangelo, A., & Barber, J. R. (2019). The role of adhesion in contact mechanics. Journal of the Royal Society Interface, 16(151), 20180738. https://doi.org/10.1098/rsif.2018.0738

Cody, W. J. (1965). Chebyshev approximations for the complete elliptic integrals K and E. Mathematics of Computation, 19(89), 105-112. https://doi.org/10.1090/S0025-5718-1965-0171370-4

Greenwood, J. A., & Williamson, J. P. (1966). Contact of nominally flat surfaces. Proceedings of London. Series A. Mathematical and Physical Sciences, 295(1442), 300-319. https://doi.org/10.1098/rspa.1966.0242

Hastings Jr, C., Wayward, J. T., & Wong Jr, J. P. (1955). Approximations for digital computers. Princeton University Press.

Hertz, H. (1881). On the contact of elastic solids I. Reine Angew. Mathematik, 92, 156-171.

Hertz, H. (1896). “On hardness,” Verh. Ver. Beförderung Gewerbe Fleisses 61, 1882, p. 410. Translated and reprinted in English in Hertz’s Miscellaneous Papers, Macmillan & Co, London, 1896, Ch. 6.

Huang, S. (2017). Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales. Nanoscale Research Letters, 12(1), 1-8. https://doi.org/10.1186/s11671-017-2362-8

Huang, S., & Misra, A. (2013). Micro–macro-shear-displacement behavior of contacting rough solids. Tribology Letters, 51(3), 431-436. https://doi.org/10.1007/s11249-013-0178-y

Hyun, S., Pei, L., Molinari, J. F., & Robbins, M. O. (2004). Finite-element analysis of contact between elastic self-affine surfaces. Physical Review E, 70(2), 026117. https://doi.org/10.1103/PhysRevE.70.026117

Johnson, K. L. (1985). Contact mechanics. Cambridge university press.

Longuet-Higgins, M. S. (1957a). Statistical properties of an isotropic random surface. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 250(975), 157-174. https://doi.org/10.1098/rsta.1957.0018

Longuet-Higgins, M. S. (1957b). The statistical analysis of a random, moving surface. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 249(966), 321-387. https://doi.org/10.1098/rsta.1957.0002

Luan, B., & Robbins, M. O. (2005). The breakdown of continuum models for mechanical contacts. Nature, 435(7044), 929-932. https://doi.org/10.1038/nature03700

Mindlin, R. D. (1953). Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 20(3), 327-344. (in Japanese)

Misra, A., & Huang, S. (2011). Effect of loading induced anisotropy on the shear behavior of rough interfaces. Tribology International, 44(5), 627-634. https://doi.org/10.1016/j.triboint.2010.12.010

Mo, Y., Turner, K. T., & Szlufarska, I. (2009). Friction laws at the nanoscale. Nature, 457(7233), 1116-1119. https://doi.org/10.1038/nature07748

Nayak, P. R. (1971). Random Process Model of Rough Surfaces. Journal of Lubrication Technology 93(3), 398-407. https://doi.org/10.1115/1.3451608

Nayak, P. R. (1973a). Random process model of rough surfaces in plastic contact. Wear, 26(3), 305-333. https://doi.org/10.1016/0043-1648(73)90185-3

Nayak, P. R. (1973b). Some aspects of surface roughness measurement. Wear, 26(2), 165-174. https://doi.org/10.1016/0043-1648(73)90132-4

Pastewka, L., Sharp, T. A., & Robbins, M. O. (2012). Seamless elastic boundaries for atomistic calculations. Physical Review B, 86(7), 075459. https://doi.org/10.1103/PhysRevB.86.075459

Persson, B. N. J. (2007). Relation between interfacial separation and load: a general theory of contact mechanics. Physical Review Letters, 99(12), 125502. https://doi.org/10.1103/PhysRevLett.99.125502

Sawyer, W. G., Freudenberg, K. D., Bhimaraj, P., & Schadler, L. S. (2003). A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear, 254(5-6), 573-580. https://doi.org/10.1016/S0043-1648(03)00252-7

Urbakh, M., Klafter, J., Gourdon, D., & Israelachvili, J. (2004). The nonlinear nature of friction. Nature, 430(6999), 525-528. https://doi.org/10.1038/nature02750

Wang, X. (2003). Finite element method. Qing Hua University Publishing Company, Beijing. (in Chinese)

Wriggers, P., & Zavarise, G. (2004). Computational contact mechanics. Encyclopedia of Computational Mechanics. https://doi.org/10.1002/0470091355.ecm033

Zhang, J., & El-Diraby, T. E. (2006). Constructability analysis of the bridge superstructure rotation construction method in China. Journal of Construction Engineering and Management, 132(4), 353-362. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:4(353)

Downloads

Published

29.03.2021

How to Cite

Huang, S., Tang, Y., Yuan, Z., & Cai, X. (2021). An Efficient Contact Model for Rotating Mechanism Analysis and Design in Bridge Construction. The Baltic Journal of Road and Bridge Engineering, 16(1), 57-76. https://doi.org/10.7250/bjrbe.2021-16.515