Louvred Noise Barrier for Traffic Noise Reduction

Authors

DOI:

https://doi.org/10.7250/bjrbe.2021-16.519

Keywords:

airflow, louvred barrier, mineral wool, noise barrier, soundabsorbing materials, sound attenuation

Abstract

Environmental issues near roads become more and more important in our society daily life. One of the most critical environmental issues is traffic noise. The present paper study louvred noise barrier designed by authors. The louvred noise barrier provides sound attenuation while allowing airflow and sunlight through it. Since the airflow resistance of the barrier is low, it requires a shallow foundation compared to conventional noise barriers. The sound attenuation performance of the louvred noise barrier was tested experimentally in a sound transmission chamber. Airflow resistance simulated using a computational fluid dynamics model. The simulation and experimental study were done with different louvred noise barrier setup: change of louvre blade angle and sound-absorbing material thickness. The results showed potential for future development for the field testing. Sound attenuation was highest in 2500 Hz and 3150 Hz octave frequency bands. Depending on the louvred barrier setup, sound attenuation was up to 28 dB(A) in mentioned frequency bands. The equivalent sound pressure level reduced up to 17 dB(A). The results showed that an increase in the louvre blade angle increases sound attenuation and increases airflow resistance.

References

Baltrėnas, P., Petraitis, E., & Januševičius, T. (2010). Noise level study and assessment in the southern part of Panevėžys. Journal of Environmental Engineering and Landscape Management, 18(4), 271–280. https://doi.org/10.3846/jeelm.2010.31

Defrance, J., & Jean, P. (2003). Integration of the efficiency of noise barrier caps in a 3D ray tracing method. Case of a T-shaped diffracting device. Applied Acoustics, 64(8), 765–780. https://doi.org/10.1016/S0003-682X(03)00034-3

Dimitrijević, S. M., García-Chocano, V. M., Cervera, F., Roth, E., & Sánchez-Dehesa, J. (2019). Sound insulation and reflection properties of sonic crystal barrier based on micro-perforated cylinders. Materials, 12(17), 2806. https://doi.org/10.3390/ma12172806

Duhamel, D. (2006). Shape optimisation of noise barriers using genetic algorithms. Journal of Sound and Vibration, 297(1–2), 432–443. https://doi.org/10.1016/j.jsv.2006.04.004

Engel, Z. (2014). Notes on sound absorption technology, K.U. Ingard. Archives of Acoustics, 21(1), 115–117.

García-Chocano, V. M., & Sánchez-Dehesa, J. (2013). Optimum control of broadband noise by arrays of cylindrical units made of a recycled material. Applied Acoustics, 74(1), 58-62. https://doi.org/10.1016/j.apacoust.2012.06.008

Gražulevičienė, R., & Bendokienė, I. (2009). Influence of truck traffic on acoustic pollution in Kaunas districts crossed by highways. Journal of Environmental Engineering and Landscape Management, 17(4), 198–204. https://doi.org/10.3846/1648-6897.2009.17.198-204

International Organization for Standardization. (2010). ISO 10140-2:2010. Acoustics Laboratory measurement of sound insulation of building elements Part 2: Measurement of airborne sound insulation.

Januševičius, T. (2011). Statybinių medžiagų ir konstrukcijų akustinių savybių tyrimas ir panaudojimas triukšmui mažinti patalpose (Doctoral dissertation, VGTU leidykla “Technika”). (in Lithuanian)

Lee, J., Chang, J. D., & Coffeen, R. (2020). Acoustical Evaluations of a Double Skin Façade as a Noise Barrier of a Naturally-Ventilated Facade. Journal of Acoustics, 2(1). https://doi.org/10.20900/joa20200001

Matsumoto, T., Yamamoto, K., & Kuno, K. (2004). Measurement and rating of sound insulation of absorptive louvers. The Journal of the Acoustical Society of Japan, 60(11), 646–654. https://www.icacommission.org/Proceedings/ ICA2004Kyoto/

Monsefi, M., Dehghani, F., & Vojdani, Z. (2011). Noise exposure of pregnant mice induces heart defects in their fetuses. Toxicological & Environmental Chemistry, 93(4), 780–788. https://doi.org/10.1080/02772248.2011.552506

Naderzadeh, M., Monazzam, M. R., Nassiri, P., & Fard, S. M. B. (2011). Application of perforated sheets to improve the efficiency of reactive profiled noise barriers. Applied Acoustics, 72(6), 393–398. https://doi.org/10.1016/j.apacoust.2011.01.002

Radosz, J. (2019). Acoustic performance of noise barrier based on sonic crystals with resonant elements. Applied Acoustics, 155, 492–499. https://doi.org/10.1016/j.apacoust.2019.06.003

Romero-García, V., Sánchez-Pérez, J. V., García-Raffi, L. M., Herrero, J. M., García-Nieto, S., & Blasco, X. (2009). Hole distribution in phononic crystals: Design and optimization. The Journal of the Acoustical Society of America, 125(6), 3774-3783. https://doi.org/10.1121/1.3126948

Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., Llinares, J., & Gálvez, F. (1998). Sound attenuation by a two-dimensional array of rigid cylinders. Physical Review Letters, 80(24), 5325. https://doi.org/10.1103/PhysRevLett.80.5325

Umnova, O., Attenborough, K., & Linton, C. M. (2006). Effects of porous covering on sound attenuation by periodic arrays of cylinders. The Journal of the Acoustical Society of America, 119(1), 278–284. https://doi.org/10.1121/1.2133715

Venckus, Ž., Grubliauskas, R., & Venslovas, A. (2012). The Research on the Effectiveness of the Inclined Top Type of a Noise Barrier. Journal of Environmental Engineering and Landscape Management, 20(2), 155–162. https://doi.org/10.3846/16486897.2011.634068

Viveiros, E. B., Gibbs, B. M., & Gerges, S. N. Y. (2002). Measurement of sound insulation of acoustic louvres by an impulse method. Applied Acoustics, 63(12), 1301–1313.

Viveiros, E. B. (1998). Evaluation of the acoustical performance of louvre by impulse response analysis [Universidade Federal de Santa Catarina]. https://repositorio.ufsc.br/handle/123456789/77590

Voropayev, S. I., Ovenden, N. C., Fernando, H. J., & Donovan, P. R. (2017). Finding optimal geometries for noise barrier tops using scaled experiments. The Journal of the Acoustical Society of America, 141(2), 722–736. https://doi.org/10.1121/1.4974070

Watts, G. R., Hothersall, D. C., & Horoshenkov, K. V. (2001). Measured and predicted acoustic performance of vertically louvred noise barriers. Applied Acoustics, 62(11), 1287–1311. https://doi.org/10.1016/S0003-682X(00)00101-8

World Health Organization. (2011). Burden of disease from environmental noise: Quantification of healthy life years lost in Europe. World Health Organization. Regional Office for Europe.

Yoon, J. Y., & Pyo, S. (2019). A Review of Mitigation Measures for Reducing Railway Rolling Noise from an Infrastructure Point of View. International Journal of Railway, 12(1), 1-9. https://doi.org/10.7782/ijr.2019.12.1.001

Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Kalibatas, D. (2009). An approach to multi‐attribute assessment of indoor environment before and after refurbishment of dwellings. Journal of Environmental Engineering and Landscape Management, 17(1), 5–11. https://doi.org/10.3846/1648-6897.2009.17.5-11

Downloads

Published

29.03.2021

How to Cite

Astrauskas, T., Baltrėnas, P., Januševičius, T., & Grubliauskas, R. (2021). Louvred Noise Barrier for Traffic Noise Reduction. The Baltic Journal of Road and Bridge Engineering, 16(1), 140-154. https://doi.org/10.7250/bjrbe.2021-16.519