Prediction of Mechanical Alterations in Multi-Layer Sbs-Modified Hot Mix Asphalt and Soil-Foundation Structure
Abstract
Keywords: |
hot mix asphalt; SBS polymer; multi-layer asphalt; soil structure; finite element method; regression analysis
|
Full Text: |
References
Ahmedzade P., Kuloglu N., Ahmedzade M., Karakas A. S., Kuloglu M., & Yilmaz M. (2007). Examination of the Rheological Properties of Pure and SBS Modified Bitumen Classical and Superpave Method. Firat University Scientific Research Projects Unit, Project No. 2003K120440.
Akbulut, H., & Aslantas, K. (2005). Finite element analysis of stress distribution on bituminous pavement and failure mechanism. Materials & Design, 26(4), 383–387. https://doi.org/10.1016/j.matdes.2004.05.017
Ameri, M., Mansourian, M., Khavas, H., Aliha, M. R. M., & Ayatollahi, M. R. (2011). Cracked asphalt pavement under traffic loading – A 3D finite element analysis, Engineering Fracture Mechanics, 78(8), 1817–1826. https://doi.org/10.1016/j.engfracmech.2010.12.013
Boussinesq, J. (1885). Application des Potentials an L’etude de L’equilbre et du Movement des Solids Elastiques. Gauthier-Villars, Paris.
Burland, J. B., Broms, B. B., & De Mello, V. F. B. (1977). Behavior of foundations and structures, In Proceedings of the 9th international conference on soil mechanics and Foundation Engineering, Tokyo, pp. 495–538.
Chen, J. S., & Huang, C. C. (2007). Fundamental characterization of SBS-modified asphalt mixed with sulfur. Journal of Applied Polymer Science, 103(5), 2817–2825. https://doi.org/10.1002/app.24621
Deng, W., Zhang, X., Chen, B., & Yan, S. (2004). Nonlinear FEM analysis of the influence of asphalt pavement under a non-homogenous settlement of roadbed. China Journal of Highway and Transport, 1, 16–19.
Hinislioglu, S., Agar, E. (2004). Use of waste high-density polyethylene as bitumen modifier in asphalt concrete mix. Materials Letters, 58(3–4), 267–271. https://doi.org/10.1016/S0167-577X(03)00458-0
Karakas, A. S. & Ortes, F. (2017). Comparative assessment of the mechanical properties of asphalt layers under the traffic and environmental conditions. Construction and Building Materials, 131, 278–290. https://doi.org/10.1016/j.conbuildmat.2016.11.049
Karakaş, A. S., Sayin, B., & Kuloglu, N. (2014). The changes in the mechanical properties of neat and SBS-modified HMA pavements due to traffic loads and environmental effects over a one-year period. Construction and Building Materials, 71, 406–415. https://doi.org/10.1016/j.conbuildmat.2014.08.060
Karakas, A. S., Kuloglu, N., Kok, B. V., & Yilmaz, M. (2015). The evaluation of the field performance of the neat and SBS modified hot mixture asphalt. Construction and Building Materials, 98, 678–684. https://doi.org/10.1016/j.conbuildmat.2015.08.140
Keskin, M. S., Laman, M., & Baran, T. (2008). Experimental determination and numerical analysis of vertical stresses under square footings resting on sand. Digest, 2008, 1263–1279.
Kim, H., Wagoner, M. P., & Buttlar, W. G. (2009). Numerical fracture analysis on the specimen size dependency of asphalt concrete using a cohesive softening model. Construction and Building Materials, 23(5), 2112–2120. https://doi.org/10.1016/j.conbuildmat.2008.08.014
Li, X. J., & Marasteanu, M. O. (2010). The fracture process zone in asphalt mixture at low temperature. Engineering Fracture Mechanics, 77(7), 1175–1190. https://doi.org/10.1016/j.engfracmech.2010.02.018
Li, Q., Yang, H., Ma, X., & Ni, F. (1935). Evaluation of microstructure and damage evolution for asphalt pavements in an advanced repeated load permanent deformation test using X-ray computed tomography. Road Materials and Pavement Design, 2016, 1–24.
McLean, Va. (2010). Long-Term Pavement Performance Program Highlights: Accomplishments and Benefits 1989–2009. FHWA-HRT-10-071. Federal Highway Administration, Turner-Fairbank Highway Research Center.
Newmark, N. M. (1935). Simplified computation of vertical pressures in elastic foundations, University of Illinois Engineering. Experiment Station, Circular No. 24, Illinois.
Novak, M., Birgisson, B., & Roque R. (2003). Near-surface stress states in flexible pavements using measured radial tire contact stresses and ADINA. Computers & Structures, 81(8–11), 859–870. https://doi.org/10.1016/S0045-7949(02)00413-3
Norouzi, A., Kim, D., & Kim, Y. R. (2016). Numerical evaluation of pavement design parameters for the fatigue cracking and rutting performance of asphalt pavements. Materials and Structures, 49(9), 3619–3634. https://doi.org/10.1617/s11527-015-0744-x
Prowell, B., Hurley, G., & Crews, E. (2007). Field Performance of Warm-Mix Asphalt at National Center for Asphalt Technology Test Track. Transportation Research Record: Journal of the Transportation Research Board, 1998, 96–102. https://doi.org/10.3141/1998-12
Sengoz B., & Isikyar, G. (2008). Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Construction and Building Materials, 22(9), 1897–1905. https://doi.org/10.1016/j.conbuildmat.2007.07.013
Sheng, L., Huang, Y., & Liu, Z. (2016). Experimental evaluation of asphalt material for interlayer in rigid–flexible composite pavement. Construction and Building Materials, 102, 699–705. https://doi.org/10.1016/j.conbuildmat.2015.10.122
Siddharthan, R., Yao, J., & Sebaaly, P. E. (1998). Pavement strain from moving dynamic 3D load distribution. Journal of Transportation Engineering, 124(6), 557–566. https://doi.org/10.1061/(ASCE)0733-947X(1998)124:6(557)
Tarefder, R. A., & Zaman, A. (2016). Carbon nanotube modified asphalt binders for sustainable roadways. In Stanton N., Landry S., Di Bucchianico G., Vallicelli A. (eds) Advances in Human Aspects of Transportation. Advances in Intelligent Systems and Computing, vol. 484. Springer, Cham. (pp. 623–633). https://doi.org/10.1007/978-3-319-41682-3_52
Ullidtz, P. (1987). Pavement Analysis. Developments in Civil Engineering, 19, 318.
Westergaard, H. M. (1938). A Problem of elasticity suggested by a problem in soil mechanics: soft material reinforced by numerous strong horizontal sheets. In Contributions to the mechanics of solids, S. Timoshenko 60th Anniversary Volume, New York - Mac Millan.
Wu, S., Xue, Y., Ye, Q., & Chen, Y. (2007). Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Building and Environment, 42(7), 2580–2585. https://doi.org/10.1016/j.buildenv.2006.06.008
Xiao, F., Amirkhanian, SN., Shen, J., & Putman, B. (2009). Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures. Construction and Building Materials, 23(2), 1028–1034. https://doi.org/10.1016/j.conbuildmat.2008.05.002
Yang, Y., Sun, H., Zhan, G., & Liu, F. (2015). The Analysis on the Influence of Porosity on the Pavement Performance of Asphalt Mixture under Heavy Traffic. Journal of Liaoning Provincial College of Communications, 4, 002.
Yao, H., & You, Z. (2016). Nanoclay modified asphalt. In Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structure Engineering (pp. 183–216). https://doi.org/10.1016/B978-1-78242-326-3.00009-9
Zafir, Z., Siddharthan, R., & Sebaaly, P. (1994). Dynamic pavement‐strain histories from moving traffic load. Journal of Transportation Engineering, 120(5), 821–842. https://doi.org/10.1061/(ASCE)0733-947X(1994)120:5(821)
Zeng, F., & Huang, X. (2004). Asphalt pavement stress under overloading. Journal of Traffic and Transportation Engineering, 3, 003.
DOI: 10.7250/bjrbe.2021-16.536
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Ahmet Sertac Karakas, Faruk Ortes

This work is licensed under a Creative Commons Attribution 4.0 International License.