Indirect Determination of Soil Young’s Modulus in Lithuania Using Cone Penetration Test Data

Authors

DOI:

https://doi.org/10.7250/bjrbe.2022-17.558

Keywords:

cone penetration test (CPT), constrained modulus, residual modulus, soil deformation modulus, Young’s modulus

Abstract

Simplified methods based on cone penetration test results are commonly used to determine soil deformation modulus, depending on the engineering geological and geotechnical conditions and the complexity of the computational approach. This paper reviews some empirical equations based on the results of the cone penetration test and gives recommendations for the assessment of Young’s modulus, oedometric modulus and residual modulus from the cone penetration test result, according to the Lithuanian technical requirements and other standards. Theoretical interpretations of results are presented together with practical examples for coarse and fine soils, limits of empirical equations application are explained.

References

Abu–Farsakh, M. Y., Zhang, Z., & Gautreau, G. (2007). Evaluating deformation modulus of cohesive soils from piezocone penetration test for consolidation settlement. Transportation Research Record, 2004(1), 49–59. https://doi.org/10.3141/2004-06

ASTM D2487–17 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).

ASTM D3418 – 17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.

Bagheri, M., & Rezania, M. (2021). Geological and geotechnical characteristics of London clay from the Isle of Sheppey. Geotechnical and Geological Engineering, 39(2), 1701–1713. https://doi.org/10.1007/s10706-020-01572-3

Brilingas, A. (1988). Metodika inzhenerno – geologicheskih izyskanij dlja promyshlennogo i grazhdanskogo stroitel‘stva v rajonah raspostranenija lednikovyh otlozhenij (na primere territorii Litovskoj SSR). Dissertacija na soiskanie uchenoj stepeni kandidata geologo–minearalogicheskih nauk. PNIIIS. Moskva (in Russian)

Bucevičiūtė, S., Marcinkevičius, D., & Dansevičienė, D. (1997). Lietuvos inžinerinis geologinis žemėlapis. Lietuvos geologijos tarnyba (in Lithuanian).

Buchanan, S. (2007). Resilient modulus: what, why, and how. Vulcan Materials Company. www.vulcaninnovations.com%2Fpublic%2Fpdf%2F2-Resilient-Modulus-Buchanan.pdf&clen=205345

Canelas, D., Fernandes, I., & da Graça Lopes, M. (2018). Use of Fall Cone Test for the determination of undrained shear strength of cohesive soils. MATEC Web of Conferences, 251, Article 04067. EDP Sciences. https://doi.org/10.1051/matecconf/201825104067

Dagger, R., Saftner, D., & Mayne, P. (2018). Cone penetration test design guide for state geotechnical engineers (Report No. 2018-32). Minnesota Department of Transportation.

Dehler, W., & Labuz, J. (2007). Cone penetration testing in pavement design (Report No. MN/RC 2007-36). Minnesota Department of Transportation Research Services Section.

Di Matteo, L. (2012). Liquid limit of low- to medium-plasticity soils: comparison between Casagrande cup and cone penetrometer test. Bulletin of Engineering Geology and the Environment, 71(1), 79–85. https://doi.org/10.1007/s10064-011-0412-5

Emmanuel, E., Anggraini, V., Raghunandan, M. E., Asadi, A., & Bouazza, A. (2019). Improving the engineering properties of a soft marine clay with forsteritic olivine. European Journal of Environmental and Civil Engineering, 26(2), 519–546. https://doi.org/10.1080/19648189.2019.1665593

GEO5. (2020). Analysis of vertical load–bearing capacity and settlement of piles investigated on the basis of CPT tests. Engineering manual No. 15.

GOST 12374–77 Grunty. Metod polevogo ispytanija statičeskimi nagruzkami (in Russian)

GOST 25100–82 Grunty. Klassifikacija (in Russian)

GOST 5180–84 Grunty. Metody laboratornogo opredelenija fizičeskih harakteristik (in Russian)

Gundersen, A., Hansen, R., Lunne, T., L’Heureux, J. S., & Strandvik, S. O. (2019). Characterisation and engineering properties of the NGTS Onsøy soft clay site. AIMS Geosciences. 2019, 5(3), 665–703. https://doi.org/10.3934/geosci.2019.3.665

Khan, M. S., Ivoke, J. A., & Nobahar, M. (2019). Progressive change in shear strength of Yazoo clay. Geo–Congress 2019: Geotechnical Materials, Modeling, and Testing (pp. 560–569). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784482124.057

Kulhawy, F. H., & Mayne, P. W. (1990). Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group.

Lekstutytė, I., Gadeikis, S., Žaržojus, G., & Skuodis, Š. (2019). Engineering geological and geotechnical properties of till soil of the Middle Pleistocene glacial period. Estonian Journal of Earth Sciences, 68(2), 101–111. https://doi.org/10.3176/earth.2019.09

Lietuvos geologijos tarnyba (LGT). (2019). Inžinerinių geologinių ir geotechninių tyrimų gruntų klasifikacija. Lietuvos Respublikos Aplinkos Ministerija (in Lithuanian).

Lietuvos geologijos tarnyba. (2015). Projektinių inžinerinių geologinių ir geotechninių tyrimų rekomendacijos, I priedas. Lietuvos Respublikos Aplinkos Ministerija (in Lithuanian).

LST 1445:1996 Geotechnika. Gruntų klasifikacija ir identifikacija (in Lithuanian).

LST EN 13286–7:2004 Birieji ir hidrauliniais rišikliais sujungti mišiniai. 7 dalis. Biriųjų mišinių periodinės apkrovos triašis bandymas (in Lithuanian).

LST EN 1997–2:2009 Eurokodas 7. Geotechninis projektavimas. 2 dalis. Pagrindo tyrinėjimai ir bandymai (in Lithuanian).

LST EN ISO 14688–1:2007 Geotechniniai tyrinėjimai ir bandymai. Gruntų atpažintis ir klasifikacimas. 1 dalis. Atpažintis ir aprašymas (in Lithuanian).

LST EN ISO 14688–1:2018 Geotechniniai tyrinėjimai ir bandymai. Gruntų identifikavimas ir klasifikacimas. 1 dalis. Indetifikavimas ir aprašymas (in Lithuanian).

LST EN ISO 14688–1:2018 Geotechniniai tyrinėjimai ir bandymai. Gruntų identifikavimas ir klasifikacimas. 1 dalis. Indetifikavimas ir aprašymas (in Lithuanian).

LST EN ISO 14688–2:2007 Geotechniniai tyrinėjimai ir bandymai. Gruntų atpažintis ir klasifikacimas. 2 dalis. Klasifikavimo principai (in Lithuanian).

LST EN ISO 14688–2:2018 Geotechniniai tyrinėjimai ir bandymai. Gruntų identifikavimas ir klasifikacimas. 2 dalis. Klasifikavimo principai (in Lithuanian).

LST EN ISO 14688–2:2018 Geotechniniai tyrinėjimai ir bandymai. Gruntų identifikavimas ir klasifikacimas. 2 dalis. Klasifikavimo principai (in Lithuanian).

LST EN ISO 17892–12:2018 Geotechniniai tyrinėjimai ir bandymai. Laboratoriniai grunto bandymai. 12 dalis. Takumo ir plastiškumo ribų nustatymas (in Lithuanian).

Mayne, P. W. (2007). Cone penetration testing. Transportation Research Board.

Mohammad, L. N., Titi, H. H., & Herath, A. (1999). Evaluation of resilient modulus of subgrade soil by cone penetration test. Transportation Research Record, 1652(1), 236–245. https://doi.org/10.3141/1652-30

Nhuan, B. D. (1981). Field testing – equipment, test methods and interpretation of test results. Swedish Geotechnical Institute.

Peri, E., Nielsen, S. D., Nielsen, B. N., & Ibsen, L. B. (2019). Consequences of slenderness and boundary conditions in triaxial testing on the reliability of design parameters. 7th International Symposium on Geotechnical Safety and Risk (pp. 370–375). Taipei, Taiwan. https://doi.org/10.3850/978-981-11-2725-0-IS12-13-cd

Plaxis 3D Foundation. (2007). Material models. Manual. Version 2.

Puppala, A. J. (2008). Estimating stiffness of subgrade and unbound materials for pavement design. Washington, DC: The National Academies Press.

Radaszewski, R., & Wierzbicki, J. (2019). Characterisation and engineering properties of AMU Morasko soft clay. AIMS Geosci, 5(2), 235–264. https://doi.org/10.3934/geosci.2019.2.235

Robertson, P. K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151–158. https://doi.org/10.1139/t90-014

Robertson, P. K. (2009). Interpretation of cone penetration tests—a unified approach. Canadian Geotechnical Journal, 46(11), 1337–1355. https://doi.org/10.1139/T09-065

Robertson, P. K. (2012). Interpretation of in-situ tests – some insights. In Proc. 4th Int. Conf. on Geotechnical and Geophysical Site Characterization–ISC’4, 4, 3–24. Recife, Brazil.

Robertson, P. K., & Cabal, K. L. (2010). Guide to cone penetration testing for geotechnical engineering (5th ed.). Gregg Drilling & Testing.

Robertson, P. K., & Cabal, K. L. (2015). Guide to cone penetration testing for geotechnical engineering. Gregg Drilling & Testing.

Satkūnas, J. (2009). Lietuvos Kvartero stratigrafijos schema. Vilnius, 13 pp. (in Lithuanian).

Schneider, J. A., & Hotstream, J. N. (2011). Cone penetrometer comparison testing. Wisconsin Highway Research Program.

Skuodis, Š., Karpis, R., Zakarka, M., Gedvilas, M., Raginis, V., Orlova, K., & Katauskas, M. (2018). Grunto, veikiamo periodinėmis apkrovomis, elgsenos tyrimai. Geologija. Geografija, 4(4). (in Lithuanian) https://doi.org/10.6001/geol-geogr.v4i4.3888

SN 448–72 Ukazanija po zondirovaniju gruntov dlja stroitelʹstva (in Russian)

Spagnoli, G. (2012). Comparison between Casagrande and drop-cone methods to calculate liquid limit for pure clay. Canadian Journal of Soil Science, 92(6), 859–864. https://doi.org/10.4141/cjss2012-011

STR 1.04.02:2011 Inžineriniai geologiniai ir geotechniniai tyrimai (in Lithuanian).

Tamošiūnas, T., Skuodis, Š., & Žaržojus, G. (2020). Overview of Quaternary sediments deformation modulus dependency on the testing methodology. Baltica, 33(2), 191–199. https://doi.org/10.5200/baltica.2020.2.6

Tonni, L., & Gottardi, G. (2011). Analysis and interpretation of piezocone data on the silty soils of the Venetian lagoon (Treporti test site). Canadian Geotechnical Journal, 48(4), 616–633. https://doi.org/10.1139/t10-085

Urbanavičienė, V., & Skuodis, S. (2019). Lack of attention to geological conditions investing in land plot for construction. Architecture, Civil Engineering, Environment, 12(4), 87–95. https://doi.org/10.21307/ACEE-2019-054

Žaržojus, G., & Dundulis, D. (2010). Problems of correlation between dynamic probing test (DPSH) and cone penetration test (CPT) for cohesive soils of Lithuania. The Baltic Journal of Road and Bridge Engineering, 5(2), 69–75. https://doi.org/10.3846/bjrbe.2010.10

Žaržojus, G., & Kelevišius, K. (2016). Smėlio tyrimai patobulintu dinaminiu penetrometru. Geologija. Geografija, 2(2), 84–91 (in Lithuanian). https://doi.org/10.6001/geol-geogr.v2i2.3320

Downloads

Published

27.06.2022

How to Cite

Tamošiūnas, T., Žaržojus, G., & Skuodis, Šarūnas. (2022). Indirect Determination of Soil Young’s Modulus in Lithuania Using Cone Penetration Test Data. The Baltic Journal of Road and Bridge Engineering, 17(2), 1-24. https://doi.org/10.7250/bjrbe.2022-17.558