Statistical Analysis of Track Geometry Parameters on Tramway Line No. 1 in Budapest
Abstract
Keywords: |
alignment; deterioration; geometrical analysis; longitudinal level; superelevation; superstructure systems; tramway track; track gauge
|
Full Text: |
References
Ahac, M., & Lakušić, S. (2015). Tram track maintenance-planning by gauge degradation modelling. Transport, 30(4), 430–436. https://doi.org/10.3846/16484142.2015.1116464
Baasch, B., Roth, M., Havrila, P., & Groos, J. C. (2019). Detecting singular track defects by time-frequency signal separation of axle-box acceleration data.
th World Congress on Railway Research. Tokyo, Japan. https://www.researchgate.net/publication/338423921_Detecting_singular_track_defects_by_time-frequency_signal_separation_of_axle-box_acceleration_data
Benmebarek, A.M., & Movahedi, R. M. (2021). DEM modeling of crushable grain material under different loading conditions. Periodica Polytechnica Civil Engineering, 65(3), 935–945. https://doi.org/10.3311/PPci.17948
Bensalah, M., Elouadi, A., & Mharzi, H. (2017). Optimization of cost of a tram through the integration of BIM: A theoretical analysis. International Journal of Mechanical and Production Engineering, 5(11), 138–142.
BKV Zrt. (2019). Tramway infrastructure planning guidelines (original title: Közúti vasúti infrastruktúra tervezési irányelvek) (in Hungarian). https://static.bkv.hu/ftp/ftp/fajlok/sarga_konyv/15.pdf
Bocz, P., Vinkó, A., & Posgay, Z. (2018). Vibration-based condition monitoring of Tramway track from in service vehicle using time-frequency processing techniques. 5th International Conference on Road and Rail Infrastructure (CETRA 2018), 631–638. https://doi.org/10.5592/CO/cetra.2018.676
Czinder, B., & Török, Á. (2021). Effects of long-term magnesium sulfate crystallization tests on abrasion and durability of andesite aggregates. Bulletin of Engineering Geology and the Environment, 80(12), 8891–8901. https://doi.org/10.1007/s10064-019-01600-4
Falamarzi, A., Moridpour, S., & Nazem, M. (2019a). Development of a tram track degradation prediction model based on the acceleration data. Structure and infrastructure engineering. Maintenance, Management, Life-Cycle Design and Performance, 15(10), 1308–1318. https://doi.org/10.1080/15732479.2019.1615963
Falamarzi, A., Moridpour, S., Nazem, M., & Hesami, R. (2019b). Integration of genetic algorithm and support vector machine to predict rail track degradation. MATEC Web Conference, 259, Article 02007. https://doi.org/10.1051/matecconf/201925902007
Firlik, B., Czechyra, B., & Chudzikiewicz, A. (2012). Condition monitoring system for light rail vehicle and track. Key Engineering Materials, 518, 66–75. https://doi.org/10.4028/www.scientific.net/KEM.518.66
Haladin, I., Bogut, M., & Lakušić, S. (2021). Analysis of tram traffic-induced vibration influence on earthquake damaged buildings. Buildings, 11(12), Article 590. https://doi.org/10.3390/buildings11120590
Ižvolt, L., Šestáková, J., & Šmalo, M. (2017). Tendencies in the development of operational quality of ballasted and ballastless track superstructure and transition areas. IOP Conference Series: Materials Science and Engineering, 236(1), Article 012038. https://doi.org/10.1088/1757-899X/236/1/012038
Jóvér, V., Gáspár, L., & Fischer, S. (2020). Investigation of geometrical deterioration of tramway tracks. Science and transport progress (Nauka ta progres transportu), 86(2), 46–59. https://doi.org/10.15802/stp2020/204152
Kampczyk, A., & Dybeł, K. (2021). The fundamental approach of the digital twin application in railway turnouts with innovative monitoring of weather conditions. Sensors, 21(17), Article 5757. https://doi.org/10.3390/s21175757
Kurhan, M., Kurhan, D., Novik, R., Baydak, S., & Hmelevska, N. (2020). Improvement of the railway track efficiency by minimizing the rail wear in curves. IOP Conference Series: Materials Science and Engineering, 985(1), Article 012001. https://doi.org/10.1088/1757-899X/985/1/012001
Kurhan, D., & Fischer, S. (2022). Modeling of the dynamic rail deflection using elastic wave propagation. Journal of Applied and Computational Mechanics, 8(1), 379–387. https://doi.org/10.22055/JACM.2021.38826.3290
Lakušić, S., Haladin, I., & Vranešić, K. (2020). Railway infrastructure in earthquake affected areas. Gradevinar, 72(10), 905–921. https://doi.org/10.14256/JCE.2967.2020
Madejski, J. (2005). Light rail, tram track and turnout geometry measurement and diagnostic tools. WIT Transactions on The Built Environment, 77, 185–195.
Metalelektro Méréstechnika Kft. (2016). Vehicle dynamics measurement system for the track condition of tramways, supplemented by an inertial sensor-based image recording system fitted to a Ganz 8-axle electric motor car (original title: A közúti vasúti vágányok pályaállapot-felmérésére alkalmas, Ganz 8 tengelyes villamos motorkocsira felszerelt, inerciális szenzor alapú képrögzíő rendszerrel kiegészített járműdinamikai mérőrendszer) (in Hungarian).
Movahedi, R. M., Habashneh, M., & Lógó, J. (2021). Elasto-plastic limit analysis of reliability based geometrically nonlinear bi-directional evolutionary topology optimization. Structures, 34, 1720–1733. https://doi.org/10.1016/j.istruc.2021.08.105
MSZ EN 13848-1. (2019). Railway applications, track. Track geometry quality. Part 1: Characterisation of track geometry. Hungarian Standard (original title: Vasúti alkalmazások. Vasúti pálya. A vágánygeometria minősége) (in Hungarian).
Németh, A., & Fischer, S. (2021). Investigation of the glued insulated rail joints applied to CWR tracks. Facta Universitatis Series: Mechanical Engineering, 19(4), 681–704. https://doi.org/10.22190/FUME210331040N
Orosz, Á., Angelidakis, V., & Bagi, K. (2021). Surface orientation tensor to predict preferred contact orientation and haracterize the form of individual particles. Powder Technology, 394, 312–325. https://doi.org/10.1016/j.powtec.2021.08.054
Przybyłowicz, M., Sysyn, M., Gerber, U., Kovalchuk, V., & Fischer, S. (2022). Comparison of the effects and efficiency of vertical and side tamping methods for ballasted railway tracks. Construction and Building Materials, 314, Article 125708. https://doi.org/10.1016/j.conbuildmat.2021.125708
Rashidi, M. M., Hajipour, A., Li, T., Yang, Z., & Li, Q. (2019). A review of recent studies on simulations for flow around high-speed trains. Journal of Applied and Computational Mechanics, 5(2), 311–333. https://doi.org/10.22055/JACM.2018.25495.1272
Šestaková, J., Ižvolt, L., & Mečár, M. (2019). Degradation – prediction models of the railway track quality. Science Civil and Environmental Engineering, 15(2), 115–124. https://doi.org/10.2478/cee-2019-0015
Soleimanmeigouni, I., & Ahmadi, A. (2015). A survey on track geometry degradation modelling. In U. Kumar, A. Ahmadi, A. Verma, & P. Varde (Eds.), Current Trends in Reliability, Availability, Maintainability and Safety. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-23597-4_1
Soleimanmeigouni, S., Ahmadi, A., & Kumar, U. (2016). Track geometry degradation and maintenance modelling: A review. Journal of rail and rapid transit, 232(1), 73–102. https://doi.org/10.1177/0954409716657849
Sysyn, M., Przybylowicz, M., Nabochenko, O., & Liu, J. (2021a). Mechanism of sleeper-ballast dynamic impact and residual settlements accumulation in zones with unsupported sleepers. Sustainability, 13(14), Article 7740. https://doi.org/10.3390/su13147740
Sysyn, M., Przybylowicz, M., Nabochenko, O., & Kou, L. (2021b). Identification of sleeper support conditions using mechanical model supported data-driven approach. Sensors, 21(11), Article 3609. https://doi.org/10.3390/s21113609
Voestalpine Schienen GmbH: Profile Programme. http://www2.uvt.bme.hu/kazinczy/6.%20Inform%C3%A1ci%C3%B3s%20anyagok_/6.1.%20S%C3%ADnszelv%C3%A9nyek_/1.%20S%C3%ADnszeln%C3%A9nyek%20geometriai%20%C3%A9s%20keresztmetszeti%20jellemz%C5%91i%20%20(VOESTALPINE%20-%20Schienen%20GmbH).pdf
Wang, H., Berkers, J., van den Hurk, N., & Layegha N. F. (2020). Study of loaded versus unloaded measurements in railway track inspection. Measurement, 169, Article 108556. https://doi.org/10.1016/j.measurement.2020.108556
Yousefikia, M., Moridpor, S., Setunge, S., & Mazloumi. E. (2014). Modelling degradation of tracks for maintenance planning on a tram line. Journal of Traffic and Logistics Engineering, 2(2), 86–91. https://doi.org/10.12720/jtle.2.2.86-91
Zboinski, K., & Woznica, P. (2021). Optimum railway transition curves – method of the assessment and results. Energies, 14(13), Article 3995. https://doi.org/10.3390/en14133995
DOI: 10.7250/bjrbe.2022-17.561
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Vivien Jover, Szabolcs Fischer

This work is licensed under a Creative Commons Attribution 4.0 International License.