Statistical Analysis of Track Geometry Parameters on Tramway Line No. 1 in Budapest

Authors

DOI:

https://doi.org/10.7250/bjrbe.2022-17.561

Keywords:

alignment, deterioration, geometrical analysis, longitudinal level, superelevation, superstructure systems, tramway track, track gauge

Abstract

The article examines the superstructures of the tramway tracks of tramway line No. 1 in Budapest (the capital of Hungary). Since the first appearance of tramways, several technological advancements have been made to serve passenger needs as efficiently as possible. Several types of tramway track superstructure systems can be differentiated, which are implemented differently in each project. Furthermore, these superstructure types have different degradation times (both geometrical and structural), which depend on several factors. Nowadays, visual inspections are no longer considered sufficient in monitoring the tracks’ condition and deterioration, thus it is necessary to consider examinations carried out using the sensors mounted on the vehicles. Adopting appropriate methods, the measured data can be modeled and the life cycle of superstructures and structural elements can be determined as a result of sufficiently long-term studies (i.e., life cycle costs, the whole lifetime, etc.). First, the authors present a review of the relevant international literature, after that they conduct analysis of track geometry parameters of the superstructures related to five sections on the investigated tramway line based on the results of the measurements performed for three consecutive years between 2019 and 2021. The analyses consist primarily in statistical examination of the measured and calculated parameters.

References

Ahac, M., & Lakušić, S. (2015). Tram track maintenance-planning by gauge degradation modelling. Transport, 30(4), 430–436. https://doi.org/10.3846/16484142.2015.1116464

Baasch, B., Roth, M., Havrila, P., & Groos, J. C. (2019). Detecting singular track defects by time-frequency signal separation of axle-box acceleration data.

th World Congress on Railway Research. Tokyo, Japan. https://www.researchgate.net/publication/338423921_Detecting_singular_track_defects_by_time-frequency_signal_separation_of_axle-box_acceleration_data

Benmebarek, A.M., & Movahedi, R. M. (2021). DEM modeling of crushable grain material under different loading conditions. Periodica Polytechnica Civil Engineering, 65(3), 935–945. https://doi.org/10.3311/PPci.17948

Bensalah, M., Elouadi, A., & Mharzi, H. (2017). Optimization of cost of a tram through the integration of BIM: A theoretical analysis. International Journal of Mechanical and Production Engineering, 5(11), 138–142.

BKV Zrt. (2019). Tramway infrastructure planning guidelines (original title: Közúti vasúti infrastruktúra tervezési irányelvek) (in Hungarian). https://static.bkv.hu/ftp/ftp/fajlok/sarga_konyv/15.pdf

Bocz, P., Vinkó, A., & Posgay, Z. (2018). Vibration-based condition monitoring of Tramway track from in service vehicle using time-frequency processing techniques. 5th International Conference on Road and Rail Infrastructure (CETRA 2018), 631–638. https://doi.org/10.5592/CO/cetra.2018.676

Czinder, B., & Török, Á. (2021). Effects of long-term magnesium sulfate crystallization tests on abrasion and durability of andesite aggregates. Bulletin of Engineering Geology and the Environment, 80(12), 8891–8901. https://doi.org/10.1007/s10064-019-01600-4

Falamarzi, A., Moridpour, S., & Nazem, M. (2019a). Development of a tram track degradation prediction model based on the acceleration data. Structure and infrastructure engineering. Maintenance, Management, Life-Cycle Design and Performance, 15(10), 1308–1318. https://doi.org/10.1080/15732479.2019.1615963

Falamarzi, A., Moridpour, S., Nazem, M., & Hesami, R. (2019b). Integration of genetic algorithm and support vector machine to predict rail track degradation. MATEC Web Conference, 259, Article 02007. https://doi.org/10.1051/matecconf/201925902007

Firlik, B., Czechyra, B., & Chudzikiewicz, A. (2012). Condition monitoring system for light rail vehicle and track. Key Engineering Materials, 518, 66–75. https://doi.org/10.4028/www.scientific.net/KEM.518.66

Haladin, I., Bogut, M., & Lakušić, S. (2021). Analysis of tram traffic-induced vibration influence on earthquake damaged buildings. Buildings, 11(12), Article 590. https://doi.org/10.3390/buildings11120590

Ižvolt, L., Šestáková, J., & Šmalo, M. (2017). Tendencies in the development of operational quality of ballasted and ballastless track superstructure and transition areas. IOP Conference Series: Materials Science and Engineering, 236(1), Article 012038. https://doi.org/10.1088/1757-899X/236/1/012038

Jóvér, V., Gáspár, L., & Fischer, S. (2020). Investigation of geometrical deterioration of tramway tracks. Science and transport progress (Nauka ta progres transportu), 86(2), 46–59. https://doi.org/10.15802/stp2020/204152

Kampczyk, A., & Dybeł, K. (2021). The fundamental approach of the digital twin application in railway turnouts with innovative monitoring of weather conditions. Sensors, 21(17), Article 5757. https://doi.org/10.3390/s21175757

Kurhan, M., Kurhan, D., Novik, R., Baydak, S., & Hmelevska, N. (2020). Improvement of the railway track efficiency by minimizing the rail wear in curves. IOP Conference Series: Materials Science and Engineering, 985(1), Article 012001. https://doi.org/10.1088/1757-899X/985/1/012001

Kurhan, D., & Fischer, S. (2022). Modeling of the dynamic rail deflection using elastic wave propagation. Journal of Applied and Computational Mechanics, 8(1), 379–387. https://doi.org/10.22055/JACM.2021.38826.3290

Lakušić, S., Haladin, I., & Vranešić, K. (2020). Railway infrastructure in earthquake affected areas. Gradevinar, 72(10), 905–921. https://doi.org/10.14256/JCE.2967.2020

Madejski, J. (2005). Light rail, tram track and turnout geometry measurement and diagnostic tools. WIT Transactions on The Built Environment, 77, 185–195.

Metalelektro Méréstechnika Kft. (2016). Vehicle dynamics measurement system for the track condition of tramways, supplemented by an inertial sensor-based image recording system fitted to a Ganz 8-axle electric motor car (original title: A közúti vasúti vágányok pályaállapot-felmérésére alkalmas, Ganz 8 tengelyes villamos motorkocsira felszerelt, inerciális szenzor alapú képrögzíő rendszerrel kiegészített járműdinamikai mérőrendszer) (in Hungarian).

Movahedi, R. M., Habashneh, M., & Lógó, J. (2021). Elasto-plastic limit analysis of reliability based geometrically nonlinear bi-directional evolutionary topology optimization. Structures, 34, 1720–1733. https://doi.org/10.1016/j.istruc.2021.08.105

MSZ EN 13848-1. (2019). Railway applications, track. Track geometry quality. Part 1: Characterisation of track geometry. Hungarian Standard (original title: Vasúti alkalmazások. Vasúti pálya. A vágánygeometria minősége) (in Hungarian).

Németh, A., & Fischer, S. (2021). Investigation of the glued insulated rail joints applied to CWR tracks. Facta Universitatis Series: Mechanical Engineering, 19(4), 681–704. https://doi.org/10.22190/FUME210331040N

Orosz, Á., Angelidakis, V., & Bagi, K. (2021). Surface orientation tensor to predict preferred contact orientation and haracterize the form of individual particles. Powder Technology, 394, 312–325. https://doi.org/10.1016/j.powtec.2021.08.054

Przybyłowicz, M., Sysyn, M., Gerber, U., Kovalchuk, V., & Fischer, S. (2022). Comparison of the effects and efficiency of vertical and side tamping methods for ballasted railway tracks. Construction and Building Materials, 314, Article 125708. https://doi.org/10.1016/j.conbuildmat.2021.125708

Rashidi, M. M., Hajipour, A., Li, T., Yang, Z., & Li, Q. (2019). A review of recent studies on simulations for flow around high-speed trains. Journal of Applied and Computational Mechanics, 5(2), 311–333. https://doi.org/10.22055/JACM.2018.25495.1272

Šestaková, J., Ižvolt, L., & Mečár, M. (2019). Degradation – prediction models of the railway track quality. Science Civil and Environmental Engineering, 15(2), 115–124. https://doi.org/10.2478/cee-2019-0015

Soleimanmeigouni, I., & Ahmadi, A. (2015). A survey on track geometry degradation modelling. In U. Kumar, A. Ahmadi, A. Verma, & P. Varde (Eds.), Current Trends in Reliability, Availability, Maintainability and Safety. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-23597-4_1

Soleimanmeigouni, S., Ahmadi, A., & Kumar, U. (2016). Track geometry degradation and maintenance modelling: A review. Journal of rail and rapid transit, 232(1), 73–102. https://doi.org/10.1177/0954409716657849

Sysyn, M., Przybylowicz, M., Nabochenko, O., & Liu, J. (2021a). Mechanism of sleeper-ballast dynamic impact and residual settlements accumulation in zones with unsupported sleepers. Sustainability, 13(14), Article 7740. https://doi.org/10.3390/su13147740

Sysyn, M., Przybylowicz, M., Nabochenko, O., & Kou, L. (2021b). Identification of sleeper support conditions using mechanical model supported data-driven approach. Sensors, 21(11), Article 3609. https://doi.org/10.3390/s21113609

Voestalpine Schienen GmbH: Profile Programme. http://www2.uvt.bme.hu/kazinczy/6.%20Inform%C3%A1ci%C3%B3s%20anyagok_/6.1.%20S%C3%ADnszelv%C3%A9nyek_/1.%20S%C3%ADnszeln%C3%A9nyek%20geometriai%20%C3%A9s%20keresztmetszeti%20jellemz%C5%91i%20%20(VOESTALPINE%20-%20Schienen%20GmbH).pdf

Wang, H., Berkers, J., van den Hurk, N., & Layegha N. F. (2020). Study of loaded versus unloaded measurements in railway track inspection. Measurement, 169, Article 108556. https://doi.org/10.1016/j.measurement.2020.108556

Yousefikia, M., Moridpor, S., Setunge, S., & Mazloumi. E. (2014). Modelling degradation of tracks for maintenance planning on a tram line. Journal of Traffic and Logistics Engineering, 2(2), 86–91. https://doi.org/10.12720/jtle.2.2.86-91

Zboinski, K., & Woznica, P. (2021). Optimum railway transition curves – method of the assessment and results. Energies, 14(13), Article 3995. https://doi.org/10.3390/en14133995

Downloads

Published

27.06.2022

How to Cite

Jover, V., & Fischer, S. (2022). Statistical Analysis of Track Geometry Parameters on Tramway Line No. 1 in Budapest. The Baltic Journal of Road and Bridge Engineering, 17(2), 75-106. https://doi.org/10.7250/bjrbe.2022-17.561