Experimental Investigation of the Bearing Performance and Failure Characteristics of Double-Row Pile-Slab Structures in Steep Mountainous Areas
Abstract
Keywords: |
bearing performance; failure characteristic; high-speed railway subgrade; indoor model test; pile-slab structure; steep slope
|
Full Text: |
References
ASTM. (2018). C39/39M-18 standard test method for compressive strength of cylindrical concrete specimens. ASTM International: West Conshohocken, PA, USA.
Buslov, A., & Margolin, V. (2018). The influence of the second row of piles in double-row pile retaining walls with the stabilization of landslide. 21st International Scientific Conference on Advanced in Civil Engineering Construction – The Formation of Living Environment, 365(5), Article 052006. http://doi.org/10.1088/1757-899X/365/5/052006
Buslov, A., & Margolin, V. (2017). The interaction of piles in double-row pile retaining walls in the stabilization of the subgrade. 19th International Scientific Conference on Energy Management of Municipal Transportation Facilities and Transport, 692, 769–775. http://doi.org/ 10.1007/978-3-319-70987-1_81
Chau, C., Soga, K., O‘Riordan, N., & Nicholson, D. (2012). Embodied energy evaluation for sections of the UK Channel Tunnel rail link. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, 165(2), 65–81. http://doi.org/10.1680/geng.9.00018
Di Laora, R., Maiorano, R. M. S., & Aversa, S. (2017). Ultimate lateral load of slope-stabilising piles. Géotechnique Letters, 7(3), 237–244. http://doi.org/10.1680/jgele.17.00038
Fan, G., Zhang, J. J., & Qi, S. C. (2019). Dynamic response of a slope reinforced by double-row antisliding piles and pre-stressed anchor cables. Journal of Mountain Science, 16(1), 226–241. http://doi.org/10.1007/s11629-018-5041-z
Gao, X. H., Tian, W. P., & Zhang, Z. P. (2020). Simulation parameter test and seepage effect analysis of pile-anchor support for binary slope. Advances in Civil Engineering, 2020, Article 8862163. http://doi.org/10.1155/2020/8862163
Guo, Y. C., Du, H., & Li, Y. H. (2019). Stability analysis and application of two-stage support on the high fill slope. International Conference on Computer Information Science and Application Technology, 1168(2), Article 022064. http://doi.org/10.1088/1742-6596/1168/2/022064
Galli, A., & di Prisco, C. (2013). Displacement-based design procedure for slope-stabilizing piles. Canadian Geotechnical Journal, 50(1), 41–53. http://doi.org/10.1139/cgj-2012-0104
China Planning Press. (2019). GB∕T 50123-2019: Standard for Geotechnical Test Methods.
China Railway Press. (2006). TB10025-2006, Specification for design of railway subgrade support structure.
Huang, J. J., Su, Q., & Liu, T. (2015). Vibration and long-term performance analysis of pile-plank-supported low subgrade of ballastless track under excitation loads. Shock and Vibration, 2015, Article 404627. http://doi.org/10.1155/2015/404627
Jiang, Y., Han, J., & Zheng, G. (2014). Numerical analysis of a pile-slab-supported railway embankment. Acta Geotechnica, 9(3), 499–511. http://doi.org/10.1007/s11440-013-0285-9
Kahyaoglu, M. R., Imanch, G., & Ozden, G. (2017). Numerical simulations of landslide-stabilizing piles: a remediation project in Soke, Turkey. Environmental Earth Sciences, 76, Article 656. http://doi.org/10.1007/s12665-017-6989-7
Li, S. L., Wei, L. M., & Chen, X. B. (2020a). Numerical investigation on dynamic performance of a bridge-tunnel transition section with a deep buried pile-plank structure. Advances in Civil Engineering, 2020, Article 8885535. http://doi.org/10.1155/2020/8885535
Li, C. D., Chen, W. Q., & Song, Y. J. (2020b). Optimal location of piles in stabilizing slopes based on a simplified double-row piles model. KSCE Journal of Civil Engineering, 24(2), 377–389. http://doi.org/10.1007/s12205-020-0712-z
Lei, H. Y., Liu, X., & Song, Y. J. (2021). Stability analysis of slope reinforced by double row stabilizing piles with different locations. Natural Hazards, 106, 19–42. http://doi.org/10.1007/s11069-020-04446-2
Long Yuqiu. (2017). Structural mechanics (3rd ed.). Higher Education Press, Bei Jing, China.
Messioud, S., Okyay, U. S., & Sbartai, B. (2016). Dynamic response of pile reinforced soils and piled foundations. Geotechnical and Geological Engineering, 34(3), 789–805. http://doi.org/10.1007/s10706-016-0003-0
Messioud, S., Sbartai, B., & Dias, D. (2017). Estimation of dynamic impedance of the soil-pile-slab and soil-pile-mattress-slab systems. International Journal of Structural Stability and Dynamics, 17(6), Article 1750057. http://doi.org/10.1142/S0219455417500572
Ravera, E., Sutman, M., & Laloui, L. (2020). Analysis of the interaction factor method for energy pile groups with slab. Computers and Geotechnics, 119, Article 103294. http://doi.org/10.1016/j.compgeo.2019.103294
Troncone, A., Pugliese, L., Lamanna, G., & Conte, E. (2021). Prediction of rainfall-induced landslide movements in the presence of stabilizing piles. Engineering Geology, 288, Article 106143. http://doi.org/10.1016/j.enggeo.2021.106143
Wei, L. M., Li, S. L., & Lin, Y. L. (2020). Dynamic performance of a deep buried pile-plank structure transition section for a high-speed railway – Field tests and numerical analyses. Transportation Geotechnics, 25, Article 100408. http://doi.org/10.1016/j.trgeo.2020.100408
Wang, Z., Yu, Y., & Sun, H. Y. (2020). Robust optimization of the constructional time delay in the design of double-row stabilizing piles. Bulletin of Engineering Geology and The Environment, 79(1), 53–67. http://doi.org/10.1007/s10064-019-01554-7
Xiao, S. G., Zeng, J. X., & Yan, Y. P. (2017). A rational layout of double-row stabilizing piles for large-scale landslide control. Bulletin of Engineering Geology and The Environment, 76(1), 309–321. http://doi.org/10.1007/s10064-016-0852-z
Xie, Q., Cao, Z. L., & Shi, X. K. (2021). Model test of interaction between load caused landslide and double row anti slide piles by transparent soil material. Arabian Journal for Science and Engineering, 46, 4841–4856. http://doi.org/10.1007/s13369-020-05256-1
Xv, T. (1982). Similarity theory and model experiments. China Agricultural Machinery Press, Bei Jing, China.
Zhang, D. B., Zhang, Y., & Kim, C. W. (2018). Effectiveness of CFG pile-slab structure on soft soil for supporting high-speed railway embankment. Soils and Foundations, 58(6), 1458–1475. http://doi.org/10.1016/j.sandf.2018.08.007
Zhou, Y. J., Liu, K. M., & Wang, F. N. (2021). Research on the mechanical properties of new double-row pile supporting structure based on an in situ study. Shock and Vibration, 2021, Article 5177777. http://doi.org/10.1155/2021/5177777
Zhu, Y. P., Wei, Z. H., & Zhu, Q. H. (2020). Application research of a prestressed anchor cable-pile-slab wall supporting structure for multistage high fill slopes. Engineering Reports, 2(2), Article e12120. http://doi.org/10.1002/eng2.12120
Zhou, Y. J., Yao, A. J., & Zheng, X. (2016). A model test study of double-row piles in deep foundation pit excavation. Electronic Journal of Geotechnical Engineering, 21(4), 1701–1714.
DOI: 10.7250/bjrbe.2023-18.602
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Rui Su, Qian Su, Peng Cheng, Heng Zhou, Xun Wang, Yanfei Pei

This work is licensed under a Creative Commons Attribution 4.0 International License.