Numerical Modelling of Displacement Pile Resistance in Sand Ground. Part 2: Discrete Model, at Rest Stage, Load Test
Abstract
Keywords: |
displacement pile; installation effect; sand; modelling pile load test initial stage
|
Full Text: |
References
ABAQUS. (2012). Abaqus 6.12-2 user’s manual. http://130.149.89.49:2080/v6.12/pdf_books/index.pdf
Bolton, M. D. (1986). The strength and dilatancy of sands. Geotechnique, 36(1), 65–78. https://doi.org/10.1680/geot.1986.36.1.65
Broms, B. B. (1971). Lateral earth pressures due to compaction of cohesionless soils. Proceedings of 4th Budapest Conference of Soil Mechanic Foundation Engineering, 373–384.
Casagrande, A. (1936). The determination of the preconsolidation load and its practical significance. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Harvard University Cambridge, 60–64.
Cil, M. B., Alshibli, K. A., & Kenesei, P. (2017). 3D experimental measurement of lattice strain and fracture behavior of sand particles using synchrotron X-Ray diffraction and tomography. Journal of Geotechnical and Geoenvironmental Engineering, 143(9). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001737
Comodromos, E. M., Anagnostopoulos, C. T., & Georgiadis, M. K. (2003). Numerical assessment of axial pile group response based on load test. Computers and Geotechnics, 30, 505–515. https://doi.org/10.1016/S0266-352X(03)00017-X
Craig, R. F. (2004). Craig’s soil mechanics. London, Spon Press.
Druckrey, A.M., & Alshibli, K.A. (2016). 3D finite element modeling of sand particle fracture based on in situ X-ray synchrotron imaging. International Journal for Numerical and Analytical Methods in Geomechnics, 40(1), 105–116. https://doi.org/10.1002/nag.2396
Duncan, J., & Seed, R. (1986). Compaction-induced Earth pressures under K0 conditions. Journal Geotechnical Engineering, 112(1), 1409–1410. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:1(1)
FLAC 3D. (2000). Fast Lagrangian Analysis of Continua, User’s manual. Minneapolis: Itasca Consulting Group Inc. https://www.itascacg.com/software/FLAC3D
Frost, J. D., Hebeler, G. L., Evans, T. M., & DeJong, J. T. (2004). Interface behaviour of granular soils. Proceedings of Engineering, Construction and Operations in Challenging Environments, 65–72. https://doi.org/10.1061/40722(153)10
Han, F., Salgado, R., Prezzi, M., & Lim, J. (2017). Shaft and base resistance of non-displacement piles in sand. Computers and Geotechnics, 83, 184–197. https://doi.org/10.1016/j.compgeo.2016.11.006
Imseeh, W. H., & Alshibli, K. A. (2018). 3D finite element modelling of force transmission and particle fracture of sand. Computers and Geotechnics, 94, 169–183. https://doi.org/10.1016/j.compgeo.2017.09.008
Jaky, J. (1948). Pressure in silos. Proceedings of 2nd International Conference on Soil Mechanics and Foundation Engineering, 1, 103−107.
Jardine, F. M., Chow, F. C., Overy, R. F., & Standing, J. R. (2005). ICP design methods for driven piles in sands and clays. Thomas Telford, London.
Krasinski, A., & Kusio, T. (2014). Comparative model tests of SDP and CFA pile groups in non-cohesive soil. Studia Geotechnica et Mechanica, 36(4), 7–11. https://doi.org/10.2478/sgem-2014-0031
Lings, M. L., & Dietz, M. S. (2005). The peak strength of sand-steel interfaces and the role of dilation. Soils and Foundations, 45(6), 1–14. https://doi.org/10.3208/sandf.45.1
Loukidis, D, Salgado, R. (2008). Analysis of the shaft resistance of non-displacement piles in sand. Geotechnique, 58(4), 283–296. https://doi.org/10.1680/geot.2008.58.4.283
Martinkus, V., Norkus, A., Nagrockienė, D. (2021). Numerical modelling of displacement pile resistance in sand ground. Part 1: Soil physical model, calibration of model parameters. Baltic Journal of Road & Bridge Engineering, 16(1), 77–90. https://doi.org/10.7250/bjrbe.2021-16.516
Mascarucci, Y., Miliziano, S., & Mandolini, A. (2013). Effects of residual stresses on shaft friction of bored cast in situ piles in sand. Journal of Geo-Engineering Sciences, 1, 37–51. https://content.iospress.com/download/journal-of-geo-engineering-sciences/jgs13009?id=journal-of-geo-engineering-sciences%2Fjgs13009
Mascarucci, Y., Miliziano, S., & Mandolini, A. (2016). 3M analytical method: Evaluation of shaft friction of bored piles in sands. Journal of Geotechnical and Geoenvironmental Engineering, 142(3). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001392
Mayne, P. W., & Kulhawy, F. H. (1982). K0–OCR relationships in soil. Journal of Geotechnical Engineering, 108(6), 851–872. https://doi.org/10.1061/AJGEB6.0001306
Matsumoto, T., Nemoto, H., Mikami, H., Yaegashi, K., Arai, T., & Kitiyodom P. (2010). Load tests of piled raft models with different pile head connection conditions and their analyses. Soils and Foundations, 50(1), 63–81. https://doi.org/10.3208/sandf.50.63
Mindlin, R. D. (1936). Force at a point interior of a semi-infinite solid. Journal of Applied Physics, 7(5), 195–202. https://doi.org/10.1063/1.1745385
Nemat-Nasser, S., & Okada, N. (2001). Radiographic and microscopic observation of shear bands in granular materials, Geotechnique, 51(9), 753–765. https://doi.org/10.1680/geot.2001.51.9.753
Norkus, A., & Martinkus, V. (2019). Experimental study on bearing resistance of short displacement pile groups in dense sands. Journal of Civil Engineering and Management, 25(6), 551–558. https://doi.org/10.3846/jcem.2019.10403
Randolph, M. F., Wroth, C. (1978). Analysis of deformation of vertically loaded piles. Journal of Geotechnical and Geoenvironmental Engineering, 104(GT12), 1465–1488. https://doi.org/10.1016/0148-9062(79)90663-6
Yang, Z. X., Jardine, R. J., Zhu, B. T., Foray, P., & Tsuha, C. H. (2010). Sand grain crushing and interface shearing during displacement pile installation in sand. Geotechnique, 60(6), 469–482. https://doi.org/10.1680/geot.2010.60.6.469
PLAXIS. (2016). PLAXIS 2D Foundation – Reference Manual. https://www.coursehero.com/file/p6thtisr/PLAXIS-2D-2016-Reference-Manual-255-RE¬FERENCE-MANUAL-Calculation-type-The/
Said, I., De Genaro. V., & Frank. R. (2009). Axisymmetric finite element analysis of pile loading tests. Computers and Geotechnics 36(1–2), 6–19. https://doi.org/10.1016/j.compgeo.2008.02.011
Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. New York: John Wiley & Sons.
Uesugi, M., & Kishida, H. (1986). Influential factors of friction between steel and dry sand. Soils and Foundations, 26(2), 33–46. https://doi.org/10.3208/sandf1972.26.2_33
Uesugi, M., Kishida, H., & Tsubakihara, Y. (1988). Behaviour of sand particles in sand-steel friction. Soils and Foundations, 28(1), 107–118. https://doi. org/10.3208/sandf1972.28.107
Viggianni, C., Mandolini, A., & Russo, G. (2012). Pile and pile foundations. London & New York: Tailor & Francis.
DOI: 10.7250/bjrbe.2023-18.604
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Vaidas Martinkus, Arnoldas Norkus, Džigita Nagrockienė

This work is licensed under a Creative Commons Attribution 4.0 International License.