Case Study of Old Steel Riveted Railway Truss Bridge: From Material Characterization to Structural Analysis

Andrzej Ambroziak, Maciej Malinowski


The structural analysis of an old steel riveted railway truss bridge located over the Maruska River on the Działdowo – Olsztyn, Poland railway line is performed in this paper to check its behaviour under today’s railway loads. The mechanical properties of construction steel extracted from the old steel bridge are investigated by tensile tests, impact tests through the Charpy pendulum impact V-notch, and an optical emission spectrometer. Structural analysis exhibits that the steel bridge requires proper structural bridge improvements to meet today’s load requirements in terms of bearing capacity and serviceability state. The paper begins with a wide survey of literature carried out on the investigation of steel riveted railway bridge subject matter. This paper can provide scientists, engineers, and designers with an experimental and structural basis in the field of old steel riveted railway truss bridge construction.


bridge structure; FEM; mechanical properties; steel riveted bridge; structural health assessment; truss bride

Full Text:



Adamiec, P., & Dziubiński, J. (1995). Pękanie i trwałość napawanych części maszyn. Wydawnictwo Politechniki Śląskiej.

Aktan, A. E., Lee, K. L., Naghavi, R., & Hebbar, K. (1994). Destructive testing of two 80-year-old truss bridges. Transportation Research Record, 1460, 62–72.

Alencar, G., de Jesus, A., da Silva, J. G. S., & Calçada, R. (2019). Fatigue cracking of welded railway bridges: A review. Engineering Failure Analysis, 104, 154–176.

Ambroziak, A., Haustein, E., & Kondrat, J. (2019). Chemical and mechanical properties of 70-year-old concrete. Journal of Materials in Civil Engineering, 31(8), 1–7.

Ambroziak, A., & Malinowski, M. (2021). A 95-year-old concrete arch bridge: From materials characterization to structural analysis. Materials, 14(7), Article 1744.

Apanas, L., Karlikowski, J., & Siekierski, W. (2018). Ocena skutków pęknięć poprzecznic w celu określenia warunków tymczasowej eksploatacji kolejowego przęsła kratownicowego. Archiwum Instytutu Inżynierii Lądowej, 26, 7–18.

Bacinskas, D., Kamaitis, Z., Jatulis, D., & Kilikevicius, A. (2013). Field testing of old narrow-gauge railway steel truss bridge. Procedia Engineering, 57, 136–143.

Banas, A., & Jankowski, R. (2020). Experimental and numerical study on dynamics of two footbridges with different shapes of girders. Applied Sciences, 10(13), Article 4505.

Bertolesi, E., Buitrago, M., Adam, J. M., & Calderón, P. A. (2021). Fatigue assessment of steel riveted railway bridges: Full-scale tests and analytical approach. Journal of Constructional Steel Research, 182, Article 106664.

Bień, J., & Salamak, M. (2022). The management of bridge structures – challenges and possibilities. Archives of Civil Engineering, 68(2), 5–35.

Boukezzi, L., Benaissa, A., Lehbab-Boukezzi, Z., & Nasser, B. (2021). Assessment of existing steel railway bridges, Algeria. European Journal of Environmental and Civil Engineering, 25(1), 117–131.

Brühwiler, E., Bosshard, M., Steck, P., Meyer, C., Tschumi, M., & Haldimann, S. (2013). Fatigue safety examination of a riveted railway bridge using data from long term monitoring. IABSE Conference, Assessment, Upgrading and Refurbishment of Infrastructures, Rotterdam, The Netherlands, 184–185.

Bryła, S. W. (1924). Podręcznik budownictwa żelaznego (Iron Building Handbook). Ksęgarnia Polska Bernarda Połonieckiego.

Cavadas, F., Rodrigues, C., Félix, C., & Figueiras, J. (2013). Post-rehabilitation assessment of a centenary steel bridge through numerical and experimental analysis. Journal of Constructional Steel Research, 80, 264–277.

Chen, W., Yan, B., Liu, X., & Jiang, Y. (2012). Research on the finite element simulation of and updating method for old riveted truss bridges. Stahlbau, 81(5), 419–425.

Chmielewski, R., & Muzolf, P. (2021). Analysis of degradation process of a railway steel bridge in the final period of its operation. Structure and Infrastructure Engineering, 19(4), 537–53.

Collette, Q., Sire, S., Vermes, W. J., Mesler, V. J., & Wouters, I. (2014). Experimental investigations on hot-driven structural rivets in historical French and Belgian wrought-iron structures (1880s–1890s). Construction and Building Materials, 54, 258–269.

Correia, J. A. F. O., da Silva, A. L. L., Xin, H., Lesiuk, G., Zhu, S.-P., de Jesus, A. M. P., & Fernandes, A. A. (2021). Fatigue performance prediction of S235 base steel plates in the riveted connections. Structures, 30, 745–755.

Croft, D. N. (1996). Effects of heat treatment. In Heat treatment of welded steel structures (pp. 21–47). Woodhead Publishing.

Cywiński, Z. (1992). Zur Korrosionsrate von Baustahl in alten Brücken. Bauingenieur, 67(3), 147–149.

D-64. (1955). Normatyw Techniczny projektowania stalowych mostów kolejowych.

DB AG. (2000). DS 804 Standard: Vorschrift für Eisenbahnbrücken und sonstige Ingenieurbauwerke. Deutsche Bahn AG.

DB Netz AG. (2010). Directive RiL 805, Richtlinie 805.0102: Tragsicherfeit bestehender Eisenbahnbrücken. DB Netz AG.

de Jesus, A. M. P., da Silva, A. L. L., & Correia, J. A. F. O. (2014). Fatigue of riveted and bolted joints made of puddle iron – A numerical approach. Journal of Constructional Steel Research, 102, 164–177.

Gheitasi, A., Michels, J., & Luo, S. (2022). Rehabilitation and retrofit design of a historic steel truss bridge in Virginia. International Bridge Conference, IBC 22-5, USA.

Gocál, J., & Odrobiňák, J. (2020). On the influence of corrosion on the load-carrying capacity of old riveted bridges. Materials, 13(3), Article 717.

Goszczyńska, B., Świt, G., & Trąpczyński, W. (2014). Assessment of the technical state of large size steel structures under cyclic load with the acoustic emission method IADP. Journal of Theoretical and Applied Mechanics, 52(2), 289–299.

Goszczyńska, B., Świt, G., Trąpczyński, W., & Krampikowska, A. (2013). Application of acoustic emission method to assess the technical condition of the bolted bridge. Inżynieria i Budownictwo, 69(10), 559–562.

Haghani, R., Al-Emrani, M., & Heshmati, M. (2012). Fatigue-prone details in steel bridges. Buildings, 2(4), 456–476.

Helmerich, R. (2013). Riveted steel bridges : Semantic management of knowledge. Wrocław University of Technology.

Heydarinouri, H., Nussbaumer, A., Motavalli, M., & Ghafoori, E. (2021). Strengthening of steel connections in a 92-year-old railway bridge using prestressed CFRP rods: Multiaxial fatigue design criterion. Journal of Bridge Engineering, 26(6).

Hołowaty, J. (2017). Toughness tests on steels from old railway bridges. Procedia Structural Integrity, 5, 1043–1050.

Hołowaty, J. (2018). Properties of high tensile steels in historical railway bridges. Construction Materials, 171(6), 234–245.

Hołowaty, J. M., & Wichtowski, B. (2013). Properties of Structural Steel used in Earlier Railway Bridges. Structural Engineering International, 23(4), 512–518.

Hołowaty, J., & Wichtowski, B. (2015). Properties of steel in railway bridge constructed in 1887. Roads and Bridges – Drogi i Mosty, 14(4), 271–283.

Hołowaty, J., & Wichtowski, B. (2022). Properties of structural steels in historical railway bridges by diagnostic tests. Ce/Papers, 5(4), 73–78.

Holzinger, H., Jeschko, A., Robra, J., & Ramberger, G. (2002). Strengthening of an old arch truss bridge, Austria. Structural Engineering International, 12(4), 276–280.

Imam, B., Righiniotis, T. D., & Chryssanthopoulos, M. K. (2005). Fatigue of riveted railway bridges. Steel Structures, 5(5), 485–494.

ISO. (2016). ISO 148-1 Metallic materials – Charpy pendulum impact test – Part 1: Test method. International Organization for Standardization.

ISO. (2019). ISO 6892-1 Metallic materials – Tensile testing – Part 1: Method of test at room temperature. International Organization for Standardization.

Jakiel, P., & Bajno, D. (2018). Assessment of technical condition of historic Penny Bridge in Opole in the context of its restoration. MATEC Web of Conferences, 174, Article 03019.

Jang, S., Li, J., & Spencer, B. F. (2013). Corrosion estimation of a historic truss bridge using model updating. Journal of Bridge Engineering, 18(7), 678–689.

Jukowski, M., Bȩc, J., & Błazik-Borowa, E. (2018). Identification of the numerical model of FEM in reference to measurements in situ. AIP Conference Proceedings, 1922(1), Article 150008.

Kääriäinen, J., & Pulkkinen, P. (2002). Rehabilitation of Tornionjoki steel truss bridge, Finland. Structural Engineering International, 12(4), 273–275.

Koc, W. (2021). An analytical approach to intertrack space widening on railroad curves. Problemy Kolejnictwa – Railway Reports, 65(193), 83–95.

Kołakowski, P., Mroz, A., Sala, D., Pawłowski, P., Sekuła, K., & Świercz, A. (2013). Investigation of dynamic response of a railway bridge equipped with a tailored SHM system. Key Engineering Materials, 569–570, 1068–1075.

Kołakowski, P., Szelek, J., Sekuła, K., Świercz, A., Mizerski, K., & Gutkiewicz, P. (2011). Structural health monitoring of a railway truss bridge using vibration-based and ultrasonic methods. Smart Materials and Structures, 20(3), Article 035016.

Kossakowski, P. G. (2013). Fatigue strength of an over one hundred year old railway bridge. Baltic Journal of Road and Bridge Engineering, 8(3), 166–173.

Kossakowski, P. G. (2016). Mechanical properties of late-nineteenth-century bridge steel at low temperature. Procedia Engineering, 156, 180–185.

Kossakowski, P. G. (2021). Mechanical properties of bridge steel from the late 19th century. Applied Sciences (Switzerland), 11(2), Article 478.

Kowal, M., & Szala, M. (2020). Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components. Engineering Failure Analysis, 110, Article 104447.

Krawczyk, R., Słania, J., Golański, G., & Zieliński, A. (2022). Evaluation of the properties and microstructure of thick-walled welded joint of wear resistant materials. Materials, 15(19), Article 7009.

Kwiatkowski, J., Anigacz, W., & Beben, D. (2020). A case study on the noncontact inventory of the oldest European cast-iron bridge using terrestrial laser scanning and photogrammetric techniques. Remote Sensing, 12(17), Article 2745.

Łagoda, G., & Łagoda, M. (2009). Strengthening steel bridge across Vistula River in Poland. IABSE Symposium: Sustainable Infrastructure – Environment Friendly, Safe and Resource Efficient, Bangkok, Thailand, 156–164.

Leander, J., Norlin, B., & Karoumi, R. (2015). Reliability-based calibration of fatigue safety factors for existing steel bridges. Journal of Bridge Engineering, 20(10).

Leonetti, D., Maljaars, J., Pasquarelli, G., & Brando, G. (2020). Rivet clamping force of as-built hot-riveted connections in steel bridges. Journal of Constructional Steel Research, 167, Article 105955.

Lima, K., Robson, N., Oosterhof, S., Kanji, S., DiBattista, J., & Montgomery, C. J. (2008). Rehabilitation of a 100-year-old steel truss bridge. Proceedings, Annual Conference – Canadian Society for Civil Engineering, 4, 2408–2418.

Malešev, M., Radonjanin, V., Ladinović, D., Lukić, I., Šupić, S., & Draganić, S. (2016). The road steel bridge over Bosut river in Serbia Part 1: The assessment of the bridge. Procedia Engineering, 156, 219–226.

Malinowski, M., Banas, A., Cywiński, Z., Jeszka, M., & Sitarski, A. (2017). Zur Wiedergeburt einer historischen Gitterbrücke. Stahlbau, 86(9), 789–796.

Malinowski, M., Banas, A., Jeszka, M., & Sitarski, A. (2018). Imaginative footbridge in Mikolajki, Poland. Stahlbau, 87(3), 248–255.

Marchewka, A., Ziółkowski, P., & Aguilar-Vidal, V. (2020). Framework for structural health monitoring of steel bridges by computer vision. Sensors (Switzerland), 20(3), Article 700.

Marques, F., Correia, J. A. F. O., de Jesus, A. M. P., Cunha, Á., Caetano, E., & Fernandes, A. A. (2018). Fatigue analysis of a railway bridge based on fracture mechanics and local modelling of riveted connections. Engineering Failure Analysis, 94, 121–144.

Marques, F., Moutinho, C., Magalhães, F., Caetano, E., & Cunha, Á. (2014). Analysis of dynamic and fatigue effects in an old metallic riveted bridge. Journal of Constructional Steel Research, 99, 85–101.

Martín-Sanz, H., Tatsis, K., Damjanovic, D., Stipanovic, I., Sajna, A., Duvnjak, I., Bohinc, U., Brühwiler, E., & Chatzi, E. (2019). Getting more out of existing structures: Steel bridge strengthening via UHPFRC. Frontiers in Built Environment, 5, Article 26.

Michalak, B., & Eckert, W. (2018). The historic steel bridge in Stany. Heritage preservation. Changing the function. Civil and Environmental Engineering Reports, 28(2), 111–123.

Nagavi, R. S., & Aktan, A. E. (2003). Nonlinear behavior of heavy class steel truss bridges. Journal of Structural Engineering, 129(8), 1113–1121.

Nam, H., Yoo, J., Yun, K., Xian, G., Park, H., Kim, N., Song, S., & Kang, N. (2021). Comprehensive analysis of cold-cracking ratio for flux-cored arc steel welds using Y- and y-grooves. Materials, 14(18), Article 5349.

Nguyen, X. T., Nogami, K., Yoda, T., Kasano, H., Murakoshi, J., Honda, H., & Tashiro, D. (2015). Evaluation of corrosion at contact surface on gusset plate connections of steel truss bridge. J-STAGE, 22(85), 161–171.

Nowak, M., Lyasota, I., & Kisała, D. (2017). Testing the node of a railway steel bridge using an acoustic emission method. In G. Shen, Z. Wu, & J. Ahang (Eds.), Advances in Acoustic Emission Technology, 179, (pp. 265–275). Springer, Cham.

Ocel, J. (2021). Historical changes to steel bridge design, composition, and properties (Report No. FHWA-HRT-21-020). Federal Highway Administration.

Pipinato, A. (2010). Step level procedure for remaining fatigue life evaluation of one railway bridge. Baltic Journal of Road and Bridge Engineering, 5(1), 28–37.

Pipinato, A., Pellegrino, C., & Modena, C. (2012). Assessment procedure and rehabilitation criteria for the riveted railway Adige Bridge. Structure and Infrastructure Engineering, 8(8), 747–764.

PKN. (1945). PN-B-195 Concrete and reinforced concrete structures. Structural analysis and design. Polish Committee for Standardization.

PKN. (1951). PN-B-03200 Steel structures – Design rules. Polish Committee for Standardization.

PKN. (1982). PN-S-10052 Obiekty mostowe – Konstrukcje stalowe – Projektowanie. Polish Committee for Standardization.

PKN. (1985). PN-S-10030 Bridges. Loads. Polish Committee for Standardization.

PKN. (2007). PN-EN 1991-2:2007 Eurocode 1: Actions on structures – Part 2: Traffic loads on bridges. Polish Committee for Standardization.

PKN. (2022). PN-EN 15528 Railway applications – Line categories for managing the interface between load limits of vehicles and infrastructure. Polish Committee for Standardization.

PKP. (2015). Id-1 (D-1) Warunki Techniczne utrzymania nawierzchni na liniach kolejowych. PKP Polskie Linie Kolejowe S.A.

Rakoczy, A. M. (2021). Fatigue safety verification of riveted steel railway bridges using probabilistic method and standard S-N curves. Archives of Civil Engineering, 67(4), 625–642.

Riveiro, B., González-Jorge, H., Varela, M., & Jauregui, D. V. (2013). Validation of terrestrial laser scanning and photogrammetry techniques for the measurement of vertical underclearance and beam geometry in structural inspection of bridges. Measurement, 46(1), 784–794.

Rules for the construction and maintenance of road bridges. (1926). Pomorska Drukarnia Rolnicza S. A.¬zymaniu-mostow-drogowych-obowiazujace-od-1-stycznia-1926-roku.MzU0 NzE1Nzg/8/#info:metadata

Salem, H. M., & Helmy, H. M. (2014). Numerical investigation of collapse of the Minnesota I-35W bridge. Engineering Structures, 59, 635–645.

Sanekata, M., Nishida, H., Nakagomi, Y., Hirai, Y., Nishimiya, N., Tona, M., Hirata, N., Yamamoto, H., Tsukamoto, K., Ohshimo, K., Misaizu, F., & Fuke, K. (2021). Dependence of optical emission spectra on argon gas pressure during modulated pulsed power magnetron sputtering (MPPMS). Plasma, 4(2), 269–280.

Sangiorgio, V., Nettis, A., Uva, G., Pellegrino, F., Varum, H., & Adam, J. M. (2022). Analytical fault tree and diagnostic aids for the preservation of historical steel truss bridges. Engineering Failure Analysis, 133, Article 105996.

Schabowicz, K. (2021). Testing of materials and elements in civil engineering. Materials, 14(12), Article 3412.

Sieber, L., & Stroetmann, R. (2013). Assessment methods to avoid brittle failure of old steel structures. Assessment, Upgrading and Refurbishment of Infrastructures, Rotterdam, The Netherlands, 574–575.

Siekierski, W. (2015). An efficient method for analysis of service load stresses in bridge gusset plates. Engineering Structures, 84, 152–161.

Siekierski, W. (2016). Analysis of gusset plate of contemporary bridge truss girder. Baltic Journal of Road and Bridge Engineering, 11(3), 188–196.

Siwowski, T. (2013). The rehabilitation of long span truss bridge. Long Span Bridges and Roofs – Development, Design and Implementation, Kolkata, India, 1–8.

Siwowski, T. (2015). Fatigue assessment of existing riveted truss bridges: Case study. Bulletin of the Polish Academy of Sciences: Technical Sciences, 63(1), 125–133.

Siwowski, T., Zobel, H., Al-Khafaji, T., & Karwowski, W. (2020). The recently built polish large arch bridges – A review of construction technology. Archives of Civil Engineering, 66(4), 7–43.

Stamatopoulos, G. N. (2013). Fatigue assessment and strengthening measures to upgrade a steel railway bridge. Journal of Constructional Steel Research, 80, 346–354.

Steffen, S., Niemann, P., & Geißler, K. (2023). Erläuterungen zur aktuell überarbeiteten Richtlinie 805 zur Bewertung von Ingenieurbauwerken der Deutschen Bahn. Bautechnik, 100(6), 318–333.

Tasak, E., & Ziewiec, A. (2009). Spawalność materiałów konstrukcyjnych tom 1 Spawalność stali. Wydawnictwo JAK.

Tomków, J., & Tomków, M. (2019). The influence of the carbon equivalent on the weldability of high-strength low-alloy steel in the water environment. Welding Technology Review, 91(5), 43–49.

UIC. (1986). UIC 779-1 Z. Zalecenia do określania nośności istniejących przęseł stalowych.

Vélez, Á. P., Sánchez, A. B., Bruna, O. A., Abella, D. M., de Prado, L. Á., & Fernández, M. M. (2021). Material behavior and fatigue assessment of old steel bridges of the spanish conventional rail network. Materials, 14(18), Article 5275.

Vičan, J., Gocál, J., Odrobiňák, J., & Koteš, P. (2016). Existing steel railway bridges evaluation. Civil and Environmental Engineering, 12(2), 103–110.

Vůjtěch, J., Ryjáček, P., Campos Matos, J., & Ghafoori, E. (2021). Iron-based shape memory alloy for strengthening of 113-year bridge. Engineering Structures, 248, Article 113231.

Walia, S. K., Patel, R. K., Vinayak, H. K., & Parti, R. (2015). Time-frequency and wavelet-based study of an old steel truss bridge before and after retrofitting. Journal of Civil Structural Health Monitoring, 5(4), 397–414.

Wang, C. S., Qian, H., Zhan, A., Xu, Y., & Hu, D. L. (2007). Fatigue and fracture evaluation of a 70 year old steel bridge. Key Engineering Materials, 347, 359–364.

Wang, C. S., Sheng, H. J., Hu, J. Y., Yan, S. L., & Duan, L. (2012). Material properties and fatigue safety evaluation of old metal bridges. Key Engineering Materials, 525–526, 137–140.

Wichtowski, B. (2014). Load-carrying capacity of steel railway bridges of the second half of XIX century – discussion. Roads and Bridges – Drogi i Mosty, 13(3), 261–269.

Wichtowski, B., & Hołowaty, J. (2011). Structural steels in old railway bridges analized by hardness and chemical content (Analiza stali starych mostów kolejowych według badań twardości i składu chemicznego). XXV Konferencja Naukowo-Techniczna – Awarie Budowalne, 1259–1266.

Yilmaz, M. F., Ozakgul, K., & Caglayan, B. O. (2022). Simulation-based reliability analysis of steel girder railway bridges. Baltic Journal of Road and Bridge Engineering, 17(3), 44–65.

Zobel, H., Karwowski, W., Wróbel, M., & Mossakowski, P. (2016). Łazienkowski bridge fire in Warsaw – Structural damage and restoration method. Archives of Civil Engineering, 62(4), 171–186.

Zoltowski, K., Banas, A., Binczyk, M., & Kalitowski, P. (2022). Control of the bridge span vibration with high coefficient passive damper. Theoretical consideration and application. Engineering Structures, 254, Article 113781.

DOI: 10.7250/bjrbe.2023-18.614


  • There are currently no refbacks.

Copyright (c) 2023 Andrzej Ambroziak, Maciej Malinowski

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.