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Abstract. In the calculation of suspension bridges, the geometrically non-linear behaviour of the parabolic cable is the main
problem. The linear methods of analysis suit only for small spans. A geometrically non-linear continual model is especially
useful for classical loading cases — a uniformly distributed load on the whole or a half span. But the modern traffic models
consist of concentrated and uniformly distributed loads. The discrete model of a suspension bridge allows us to apply all
kinds of loads, such as distributed or concentrated ones. The simplest suspension bridge consists of a geometrically non-
linear cable, connected by hangers with an elastic linear stiffening girder. Depending on the load case, the hangers may be
unequally loaded; thus the cable may also be loaded by unequal concentrated forces. The assumptions of the discrete
method described here are: linear elastic strain-stress dependence on the material and absence of horizontal displacements
of hangers. Hangers elongation is taken into account. Some comparative numerical examples are presented.
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1. Introduction

Classical treatment of suspension bridges is presented
in [1, 2]. A generalised method of continuous modelling of
different prestressed cable structures was proposed in [3, 4].
It includes plane structures and spatial networks and pro-
ceeds from geometrically non-linear equilibrium conditions
and equations of deformation compatibility [3—5]. A pecu-
liarity of this method is an immediate inserting of
displacements of cable supports into the generalised equa-
tions of deformation compatibility.

Recent publications in the field of suspension bridges
consider mainly the wind-induced dynamic processes and
specific problems of the bridge elements design [6]. A thor-
ough review of literature in this field is given in the hand-
book [7]. However, only linear models have been consid-
ered [7]. More recent papers on suspension bridges consider
the application of the standard finite element method [8].

In this paper the analysis of the suspension bridges is
carried out using non-linear equilibrium conditions and
generalised equations of deformation compatibility, taking
into account the actual boundary conditions.

2. Discrete model for elastic cable

If the cable is loaded by a uniformly distributed load,
then it takes the parabolic form. In reality the cable is loaded

by concentrated forces, and it takes the form of the string
polygon. Then it may be regarded as a geometrically non-
linear rod without bending stiffness. If the applied forces
are equal and uniformly situated, then the nodes of this
polygon are on the parabolic line.

The initial state of equilibrium of the cable loaded by
a concentrated load is shown in Fig 1.

From the equilibrium considerations of forces we may
write for every node [4]:
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Fig 1. A discrete scheme of the cable in the state of equilibrium
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cable (cable force), z, |, z, z,,, are the initial vertical coor-

dinates of the cable, a, |, a, are the horizontal distance be-

tween cable nodes, and £, is the initial external force.
From Eq (1) we have
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Egs (2) and (3) give us the coordinates of the string
polygon, if the horizontal force H is known. When the sup-
porting points of the cable are on the same level (z,=z,,,),
then
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where Vg = = is the vertical support reaction

from the initial loads F; and / is the cable length of the
horizontal projection.

For a cable which has supporting nodes on different
level we may calculate H,, as

aOéFOi (I-%)
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Here the initial form of the string polygon is described
by three coordinates z, z,, z,, . Instead of z; you may use
another known value of the coordinate z,.

By the action of the temporary loads AF; (Fig 2), the
equilibrium equation for the node i is expressed as

WIJ+Fi=o

(6)

where w, |, w,, w,,, are vertical displacements,  —the thrust
from temporary and initial load and F, = F; + F| is the
whole concentrated load in node i.

From Eq (6) we get an expression for the vertical dis-

placement
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Fig 2. Deformation of the cable under additional load

There are two unknown parameters in Eq (7): w, and
H. Thus we need another equation for calculating them.
For this purpose, it is possible to use the principle of mini-
mum total potential energy [3]

n
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where U is the strain energy of deformed structure. Here,
we use the compatibility condition of the relative elonga-
tion of the cable [1]. The relative elongation of the cable is
expressed as
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and from the condition of linear deformation

2
H-Ho | (Zu-7
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where EA4 is the stiffness of the cable in tension and U, U,
are the horizontal displacements of cable nodes.

Taking into account (9) and (10), this compatibility
condition may be presented as

27%
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Horizontal displacements of the internal nodes u,, u,_,
may be eliminated by means of summation of the equa-
tions of deformation compatibility (11) and after replacing
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n
_;)(Um —U; )= Upy —Ug (12)
we may write the Eq (11) in the form
3
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Solution of the system of non-linear equations (6) and
(13) enables us to calculate all the displacements w; and H
by the given initial cable form and boundary conditions u,
un+1'
3. Discrete model for elastic cable with the stiffening
girder

The scheme of a girder-stiffened suspension bridge is
presented in Fig 3.

The initial vertical load F); is fully balanced by the
cable and prestresses it. For calculating the initial cable force
H, we may use expressions ( 4) or (5). Part of the addi-
tional load P is balanced by the cable and the rest of it is
balanced by the stiffening girder. The equation that describes
the deflection of the girder can be written as:

2
Eblbw(x):EbIbW0+EbIb(p0x—M(X_a) ‘H(x—-a)+
(x=b)° =0t
FT-H(X b)+p 4 H(x-c¢)
(x-d)*
P, H(x=d),

(14)

where E, 1, is the rigidity of the stiffening girder in bend-
ing, w,,— the vertical displacement at the first point of girder,
0~ the angle of rotation at the first point of the girder, a, b,
¢, d — the coordinates of the points of the force application
and H(x) is the Heaviside’s function.

Eq (14) can be used for calculating deflection from
the sum of applied external concentrated moments M,
forces F, and from the uniformly distributed load p.

In case of vertical pylons, the horizontal displacements
of the supporting nodes of the cable may be presented as

(H=Hp)!l

3 (15)
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where / is the length of the anchor cable and o is the angle
of inclination of this cable.

Fig 3. A suspension bridge model

Letus consider only the stiffening girder. Using Eq (14)
we can write for every hanger joint and support point B:
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where F’ is the internal force in the hangers and V', — the
vertical support reaction.
We obtain n + 1 linear equations for calculating F, but
there are n + 2 unknown parameters: /7, F, ... F.,V, and
¢, An extra equation can be written from the moment equi-

librium condition upon support B, as follows:

iFi(L—xi)+vAL+Mp=o,
i=1

(17)

where M, is the moment of the external forces upon sup-
port B, and L — the span of the suspension bridge.

It became evident that it is reasonable to converge all
linearly interdependent components into a uniform linear
equation system, which thereafter will be dependent on the
cable’s internal force H. Thus, the solution is reduced to
the search of such H, when placing the displacements cal-
culated from the linear equation system into the expression
linking the elongation of the cable and the displacements
(13) and the H found in its solution equals the H used for
compiling the linear equation system. As an algorithm, such
a system could be described as in Fig 4.

The matrix of the linear equation system of the corre-
sponding system can be presented as follows:
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The maximum value of
is determined, assuming
that the whole load is
placed on the cable

The cables configuration
and the initial cable force
Hy s calculated

Y

v
A linear system is compiled Hl=H, and H2=H are
and solved, which gives the assigned
displacements of the girder ¥

and the cable
L 2
The cable force control

value Hy is calculated from
the expression (16)

1,

H=(H1+H2)/2

yes

The problem is solved. the internal forces
of the stiffening girder can be found by the
expressions of structural mechanics

Fig 4. Algorithm of equation system

Here the matrix components 4 and free term C, , derived
from (6) can be expressed as:

Ai-r=aH: Aj=H(a1+3); Aja=aaH;
C=-H(EW1-(Z1+2)W +7 aW)-F -a43. (I18)

The coefficients BiJ. and Cp, have been derived from the
universal equation of the girder’s elastic curve (16) and can
be presented as:

if i>j;1<i<nand 1< j<n,then

(6 - )3

>

ST

otherwise BiJ =0,
and forj>n
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The free term Cp; depends on the specific load situa-
tion of the bridge, and contains all these coefficients of the
universal equation of the elastic curve, which do not con-
tain the sought deformations and internal forces:

S _ 3
Cri= 3 R 2 H (- +
k=1
_ 4 t -d 4
> n gk Hea)- 3 p g HO )

In case of a bridge loaded with uniform loading p, the
free term is in the following form:

px’

=P (20)
24Eg| g

Ck

The coefficients of the last row of the matrix are de-
rived from the equilibrium condition of the moments as
related to the bridge support B, and are presented as

D =(1-%); Dnp=1; @1)

and the free term depends on the loads placed on the bridge;
in case of a uniformly loaded bridge, the free term is

(22)

4. Numerical examples

Let us have suspension bridges with the following
parameters, used for provisional design of the bridge for
Saaremaa Fixed Link (Table 1).

A comparison of maximum deflections from the whole
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Table 1. Parameters of suspension bridges

Span, m 600 | 780 | 960 | 1080 | 1200
Sag of the cable, m 75 |1 97,5] 120 | 135 | 150
Side span, m 250 | 325 | 400 | 450 | 500

Moment of inertia of the

stiffening girder 7, X 104 cm* 1269 | 2488 | 2964 | 4524 | 5896

Young's modulus of the

stiffening girder E,, GPa 210 1 210 | 210 | 210 | 210

Cross-section area of the cable

4 ) 768 | 1092 | 1458 | 1738 | 2008
, cm’

Young's modulus of the cable
E, GPa

Initial load p;, kN/m 30,4 | 38,2 | 43,3 | 50,0 | 54,8

170 | 170 | 170 | 170 | 170

Additional weight of the bridge

deck p,, kN/m 14,4 | 141 | 144 | 144 | 14,4

Whole or half-span traffic load 311 | 307 | 304 | 300 | 29.6

Dy kN/m
500 -
450 - ]
400 - [ ] : _
350 1] . | |
E . e o |
2300
§ o L0
S 250 A . .
o e |
2 200 DFEM, linear
2 OContinual model
150 1 O Discrete model
100 4 !
50 -
0

780 960 1080 1200
Span, m

Fig 5. Deflections from the whole span uniformly distributed traffic
load
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Fig 6. Deflections from the half span uniformly distributed traffic
load

and half span traffic load p, are shown in Figs 5 and 6. Thus
the linear principle of superposition of the load is not valid
for suspension bridges; the deflection caused by traffic load
is calculated by the expression:

W(pz) = W(po +p, +p2) - W(p() +I91)- (23)

The continual method used here is described in [3, 5].
The linear method is the usual linear finite elements method
(FEM). In case of a uniformly distributed half-span load,
the linear FEM method gave unrealistic displacements, and
these results are not shown in Fig 6.

5. Conclusions

1. In this article, the equations of the discrete method
for statical analysis of suspension bridges have been pre-
sented. For a numerical solution, a system of non-linear
equations has been derived. This method may be used uni-
versally for all kinds of loads — uniformly distributed whole
and half-span load, concentrated wheel or axial load.

2. Numerical examples show, that in case of the uni-
formly distributed whole and half-span load, the continual
method [3] and the discrete method give practically the same
maximum vertical deflection. Vertical displacements in case
of uniformly distributed whole span load are approximately
1,3—1,4 times less than those obtained by the linear FEM
method. This method is not applicable in case of a uniformly
distributed half-span load.

3.1f discrete loadings are predicted for the suspension
bridge, the discrete calculation method should be used for
a preliminary calculation of the bridge instead of continual
calculation method or linear FEM.
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