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Abstract. High strength cables and steel plates or prestressed rc members (also named as stress-ribbons) usually serve the
main load carrying elements of up-to-date pedestrian bridge structures. An application of these elements is prescribed
actually by large magnitude of permanent load. However, a realisation of such structures requires many material resources.
This investigation presents an advanced structure type for pedestrian suspension bridge created from hot-rolled cable or
welded members of finite flexural stiffness. Development of displacements in such structure subjected by symmetric and
asymmetric loadings is analysed. A method of stabilising displacements via flexural stiffness variation and its efficiency is
considered. Displacement variation and strength of advanced load carrying structure of structure are investigated, the devel-
oped analytical expressions for determining inner forces and displacements are presented. An analysis of rational param-
eters for advanced structure of pedestrian suspension bridge yields expressions for determining the necessary flexural stiff-
ness, cross-sectional height and area of load carrying structural elements. A rational primary shape of structure versus ratio
of permanent and variable loadings is analysed. A technical-economic efficiency is illustrated via numerical simulation of
rational parameters for advanced structure of pedestrian bridge.

Keywords: pedestrian suspension bridge, cable structure, flexural stiffness, non-linear analysis, symmetric and asymmetric
loadings, rational parameters, technical-economic efficiency.

1. Introduction

Suspension structures are widely employed as load
carrying structures for various types of buildings [1-7]. This
feature is prescribed by technical efficiency and wonderful
architectural shape of structural form. The largest spans in
the world are covered by employing ability of structure to
carry tensile stresses in the most efficient way [8—13]. From
ancient times the suspension structures are employed for
pedestrian bridges. Stress ribbon suspension pedestrian
bridges distinguish amongst other ones by small height and
weight [8, 14-19]. High strength steels cables or steel sheets
serve as main load carrying member in such type up-to-
date bridges [14, 15, 17]. Large shape changes
(displacements) caused by asymmetric and/or concentrated
loads is the main disadvantage of a suspension structure.
The massive, reinforced concrete (rc) most often erected

decks are aimed to stabilise primary form of suspension
structure [8, 14, 15]. Prestressing of such rc structures every
so often is applied [16—19]. Relatively large tensile inner
forces develop in suspension structures due to relatively
small sag and large permanent loads. This feature prescribes
the large cross-sectional areas of load carrying members
and the massive anchor foundations. The rigid or close to
rigid support causes an additional stressing [15, 18]. Pre-
stressed elements of such bridges are used to carry loadings
both by tension and bending. Therefore one must exactly
evaluate stress and strain state of such members [19]. One
must note that despite the efficiency to resist static and dy-
namic loadings [16-21], an application of rc elements for
bridges is accompanied by certain maintenance peculiari-
ties [22-24].

Steel suspension (as well as rc) load carrying struc-
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tures, erected mostly from steel sheets are employed in up-
to-date engineering [8, 14]. A steel sheet as well as a cable
cannot be treated as absolutely flexural cable suspension
element as it has a certain height. One can state that rela-
tively large residual bending moments develop in these el-
ements [11, 25, 26]. Thus one can employ the flexural stiff-
ness to monitor cable deformability. One can list the engi-
neering solutions for roofs where the so-called “rigid” ele-
ments are employed to reduce displacements caused by
asymmetric and local [5, 6, 27]. Such tensile-flexural mem-
bers stabilize the primary form of the whole structure in an
efficient way. Prestressing is not necessary for such struc-
tures. The structures are produced from usual rolled or
welded profiles, that actually simplifies the production and
erection of the load-carrying structure [5, 27]. It is impor-
tant to note that the lightweight steel sheets [1, 28, 29] or
efficient composite elements for flooring can be used in-
stead of usual heavy (massive) elements [14, 30].

The “rigid” members now start to be employed versus
usual flexible cables aiming to reduce structural shape
changes [31-33]. In listed investigations the suspension
(produced of “rigid” members) bridge behaviour is ana-
lysed, economic efficiency was proved. Technical-economic
efficiency is rather important point in valuation of steel
structures for bridges [34]. It is obvious that the best result
can be obtained when employing optimisation methods, ac-
counting strength, stiffness and stability constraints and non-
linear behaviour [35, 36]. The significant effect can also be
achieved when composing rational cross-sectional param-
eters due to strength and stiffness conditions [37]. One can
note that choosing a certain steel grade is amongst the defi-
nitely important features (especially for tensile members)
in the considered case [38, 39].

An advanced load carrying structure of pedestrian sus-
pension steel bridge is considered in this investigation. The
usual flexible cables are replaced by the hot rolled or welded
profiles, possessing the finite flexural stiffness. The rea-
sons of developing displacements (in case of symmetric
and asymmetric loadings) of suspension bridges, con-
structed from such elements, are discussed. Stabilisation of

displacements via flexural stiffness is considered. Behav-
iour of advanced load carrying structure is analysed, ana-
lytical expressions for determining inner forces and
displacements for “rigid” members are presented. A method
for identifying the considered structure rational parameters
is presented. Method yields expressions for flexural stiff-
ness magnitude, cross-sectional height and area. Numeri-
cal simulations were performed to prove the technical-eco-
nomic efficiency of rationally designed advanced structure
for a pedestrian bridge.

2. Stabilisation of displacements of suspension bridge

2.1. Kinematic displacements of suspension

bridge

The main load carrying element of the suspension pe-
destrian bridge is flexible suspension cable. Stiffness con-
ditions in design of such a structure are the governing ones.
In terms of displacements they read: Af <Afj,,
Wmax < Wjim - Suspension cable keeps the primary shape
when loaded by a complement symmetric load of constant
intensity p* distributed along the whole span. The maxi-
mum vertical displacement Af , located at middle span is
prescribed only by elastic deformation [1, 5, 11]. An ap-
proximate magnitude of displacement is defined by:

*\ 4
Af Eiu, (1)
128 E. A fg

where fg — cable primary sag at the middle span, g — per-
manent symmetric load of constant intensity distributed
along the whole span.

The maximal distribution to total displacement mag-
nitude is that of kinematic displacements. The nature of
these displacements is prescribed by adaptation of cable to
carry loads mainly via tension. The asymmetric comple-
ment load, subjected onto one cable middle span (the most
dangerous loading case), change the primary shape as shown
in Fig 1. One can obtain pure kinematic displacements by
introducing an infinitely large axial stiffness of cable, ie

Fig 1. Change of asymmetrically loaded cable shape
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EA — o . The extreme displacements (in different direc-
tions) then develop in both middle spans of the cable.

Let's consider the case when cable is loaded by the
following distributed loads: the symmetric load ¢ per total
span [ and the asymmetric (supplement) load p of constant
intensity per a half-span (Fig 1).

It is obvious that the kinematic sag at middle span fkl
is less than the primary sag fq [40]. Thus the kinematic
displacement at middle span is negative (ie directed up of
lifted in respect of the primary position) [40, 41]. It is im-
portant to identify extreme (maximum) displacements, as
it was mentioned above. For cable left part, ic loaded by a
asymmetric load p the maximum vertical displacement for
cable part (Xx<1/2) is defined by [40]:

1
O max = fo[(ZB—BZ) Z-1lL(3B- ZBZ)} ,
§ 2
_1-&+3y/4
where B = 1-E+y 2)
Taking X* =1/4 from (2) one obtains on approximate
formula for loaded part displacement evaluation [40]:

3

Ol max (X)=> fo|: 3)

(W+2y/3)
2 fol 1),

&

The above formula is rather compact and does not re-
quire complicated and large calculations. An analysis of
the formula (3) proves that it produces insignificant errors
when comparing with an exact solution (not exceeding
1,6 %, when y =10 [40, 41]).

Maximum kinematic displacement of the right un-
loaded cable part can be evaluated via an approximate for-

mula [39]:
3
Ork, max (X):Z fo{(%_l}"%}' @)

An analysis of formulae (3) and (4) show that the right
cable part (free from load p) extreme kinematic
displacements in absolute values are greater than the ones
of the right part (ie Ok max > Ok max )- Relative difference
amongst these displacements vary within bounds 28 and
84 % [40, 41]. This result prima facie can be explained by
the fact of always negative middle span displacement Af} .
But one must keep in mind that negative (lifting)
displacements from engineering point of view can be more
dangerous as they reduce the primary curvature of cable
causing tensile stresses the bridge deck.

One must note that vertical kinematic displacements
are always accompanied by horizontal at an asymmetric
loading [40, 41]. They are always directed to cable side
loaded by supplement load p.

A calculation of bridge structures for asymmetric load-

ing includes an evaluation of total (sum) displacements of
load carrying cable in all stages of loading [1, 9, 11]. To
obtain simplified expressions, compatible with practical
design calculations, one proposes the total displacements
to split into kinematic and elastic ones. At the first stage
kinematic displacements are determined, at the second stage
the elastic displacements are determined taking into account
the changed geometry of adapted to loading cable. The to-
tal sag at the middle span f; can be presented as sum of
kinematic fkl and elastic Afy sags [41]:

fy = fi, +Afg . (5)

Total displacement at the cable middle point is pre-
sented as sum value, by analogy:

Af = Afk +Afe| . (6)

One can obtain a simplified (approximate) formula for
determining elastic displacement at cable middle point, fol-
lowing the above described evaluation techniques for sym-
metric loading:

3 d'@+y/2)y

Afgy =
128 E.Af2
pore W= 1+y+vy2/4 .
where 1+y+5y2/16' @

Formula (7) allows direct (excluding iterative calcu-
lation procedures) determining the elastic displacement in
case of a known kinematic sag. This expressions is also
convenient as allows an evaluation of the cable area 4 nec-
essary to ensure cable stiffness conditions. One must note
that formula (7) is general, ie it serves for determining of
Afy for both loading cases, ie symmetric and asymmetric
ones. When loading is symmetric, ie when y =0, formula
(7) transforms to expression (1).

2.2. Stabilisation of displacements

Stabilising the symmetrically loaded cable

The most important task in the design of cable pedes-
trian bridge is to ensure satisfactory stiffness conditions, as
it was mentioned above. Stabilisation of displacement in
case of symmetric loading can be achieved by determining
necessary cross-sectional area by:

EiM, (8)
128 E. £ Afyipm

Analysis of formula (8) shows that cable area depends
directly on total value of permanent and variable (supple-
ment) load intensities. One can also reduce cable area by
increasing primary sag and/or its admitted (limited) mag-
nitude.
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Stabilising the asymmetrically loaded cable

The maximal vertical displacements in case of asym-
metric loading are conditioned by kinematic displacements.
Two main approaches for reducing these displacements are
applied in engineering practice, namely: 1) by increasing
permanent symmetric load ¢; 2) by reducing the primary
sag fg. In some cases the prestressing of bridge structural
members is employed [15, 16, 18] for the purpose. An em-
ployment of the all above-mentioned technical means re-
sults an increment of thrusting force Hkl' This force ne-
cessitates to increase the cross-sectional areas of structural
elements and create larger anchor foundations subsequently.

Define the ratio of symmetric load vs total load by
m=ql(q +p) = 1/(1 +v). Applying this parameter one can
fix variation of kinematic displacement values vs incre-
ment of permanent load magnitude [33]. Fig 2 illustrates a
relative reduction of kinematic displacement vs parameter
m. When increasing load ratio y vary from 10 till 1, the
parameter m changes from 0,091 to 0,50. Aiming to reduce
ratio ¥ from 10 to 8, one must increase permanent load by
1,25 times, ie m magnitude changes from m= 0,091 by
m = 0,111. One can find from the graph that the increment
of ¢ twice (m=0167) results reduction of maximal left
part cable displacements only by 7,5 %, and that of right
part by 15 %. Having increased the permanent load by 5
times ( m= 0,333), the maximal left part displacements re-
duce by 26,5 %, the right part by 42,5 %. An increment of
permanent load by 10 times causes the reduction of the
above-mentioned cable parts displacements by 46 % and
by 63 % respectively.

The increment of permanent load value causes changes
of thrusting force. An increment of the permanent load twice
(m=0167) causes the increment of thrusting force by
14 %. An increment of permanent load by 5 times

(m=0,333) causes the increment of thrusting force by 59 %.
The permanent load increment by 10 times causes an in-
crement of thrusting force by 134 %.

The reduction of primary sag fq leads to an analo-
gous result. One must note that the relative increment of
permanent load (when m> 0,2 ) causes a greater increment
of thrusting force (in absolute values) when comparing with
desired reduction of kinematic displacement magnitudes,
ie the thrusting force increases relatively faster compared
with the reduction of kinematic displacements.

One can note that the finite flexural stiffness EJ mem-
bers of load carrying structure can be employed to reduce
kinematic displacements of cable [5, 27, 31]. Both, axial
and flexural stiffnesses of structural members combined
together accordingly allow an efficient employing the at-
tractive features of suspension cable and flexural beam: a
rational resisting to primary shape changes via tensile and
flexural deformations. Such structural members are pro-
duced from hot rolled or welded steel profiles. It is proved
that “rigid” (of finite flexural stiffness) load carrying struc-
tural members are more efficient compared with a suspen-
sion cable in case of large asymmetric and local loadings
[5, 27]. One can reduce a trusting force and mass of anchor
foundations, subsequently by employing the lightweight
deck structures in pedestrian cable bridges. It is obvious
that stabilisation of primary form of asymmetrically loaded
pedestrian bridge can be achieved only by choosing a cer-
tain flexural stiffness of load carrying structural elements.
An efficiency of “rigid” suspension cables increases pro-
portionally vs the increment of flexural stiffness EJ and
vs the increment of primary sag [5]. Denote by 1 the ratio
of absolutely flexible and “rigid” cable maximal displace-
ments. Fig 3 represents the graph of variation of maximal
kinematic displacements (parameter 1 vs slenderness pa-

05 033 025 02 017 0,14 0,13 0,11 0,1 0,09
0% m

_

—10 %
y

—20% /
—30% //
—40 %
'
—50 % /
—60 % 1

—70 %
w

max

100 %

80 %

60 %

20 %

0% ki

Fig 2. Left W max and right Wy max  parts cable kinematic
displacements relative values (%) vs parameter m (line via trian-
gles correspond to the left cable part, line via quadrates corre-
spond to the right cable part)

Fig 3. Difference 1 amongst maximal displacements of absolutely
flexible and “rigid” cable vs its slenderness parameter k/
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rameter k| =|+/H /EJ ) in case of an asymmetric loading.
One can obviously find from the graph that the reduction

of cable by &/ magnitude, ie reduction of the cable flexural
stiffness £J causes the increment of 1 magnitude. For in-
stance, for kl =10 displacements of “rigid” cable are al-
most 27 % less, for kl =5 they reduce by 60 %. In case of
large flexural stiffness (kl=1) cable, maximal
displacements reduce approx 98 %.

An important peculiarity of stabilisation mean via vari-
ation flexural stiffness is that it does not result in a practical
increment of thrusting force. Moreover, a significant incre-
ment of cable flexural stiffness reduces the thrusting force
because a part of asymmetric load is carried via bending.

3. Advanced structure of a suspension pedestrian steel
bridge

Main load-carrying elements of stress ribbon suspen-
sion pedestrian bridges usually are constructed from flex-
ible cables or sheets [2—18]. Load-carrying cables or sheets
are replaced by “rigid” parabola form members in investi-
gated advanced pedestrian bridge structure. They are con-
structed from I type, box type or circular rolled or welded
profiles. The ends of load-carrying members are connected
via roller supports, to the contrary of the stress ribbon struc-
ture. This allows avoiding large support bending moments
and simplifies erection works. Seeking to reduce the stresses
in these “rigid” members, caused by support displacements,
one can introduce the supplement third hinge at the middle
span of a bridge (Fig 4). These “rigid” load-carrying ele-
ments of advanced structure avoid using technically com-
plicated prestressing, their connections technically are sim-
pler. Seeking to increase technical-economic efficiency of
such structures, one can erect the lightweight steel or rc
(under necessity) deck, and this is a technically simple work.
For instance, one can apply very light thin tensile steel sheets
for deck as proposed in [33]. These cylindrical form deck
sheets can be distributed transversely or longitudinally in
respect to load-carrying suspension structure. The supple-
ment transverse deck beams need to be introduced for erec-
tion of longitudinal deck.

One must note that an employment of “rigid” suspen-

sion (most often the three-hinged) load carrying elements
allow an efficient stabilising primary form of pedestrian
bridge in case of asymmetric loadings and/or concentrated
forces. One reduces thrusting forces of load carrying ele-
ments and the mass of foundations, subsequently having
employed the relatively light bridge deck. Another attrac-
tive feature of “rigid” elements is that it is possible to en-
large (if maintenance conditions allow) the primary sag of
load carrying structure up to 1,5-2,0 times
(fg=1/50+1/40). This case does not cause large kin-
ematic displacements but results in a significant reduction
of thrusting forces. The expensive prestressed steel cables
can be replaced by usual structural steel. One must note
that “rigid” suspension members can be produced from
straight rolled steel profiles [27]. This simplifies produc-
tion of load carrying members and improves deck mainte-
nance conditions. However, this technical solution results
in larger bending moments (and subsequently stresses) when
comparing with parabolic shape “rigid” cables. Thus larger
member areas should be employed. On the other hand, these
structural elements are more efficient in case of large asym-
metric loadings. The efficiency of such structure increases
if viewing-rest pitch is erected in the middle span of sus-
pension structure [15].

4. Design of “rigid” cables of suspension bridge

Design of load carrying “rigid” element of advanced
pedestrian suspension structure is performed taking into
account its non-linear behaviour. Static (equilibrium), geo-
metrical and physical equations are employed to identify
inner forces and displacements. One cannot find many in-
vestigations devoted to the analysis of suspension load car-
rying “rigid” three-hinged [27, 33] elements. Let us present
in brief the design of load-carrying structure for the con-
sidered type of bridge. Divide the structure in two inclined
“rigid” cables with lower supports (central hinge can dis-
place only vertically) for obtaining compact solutions
(Fig 5). Let us create equilibrium equations in global coor-
dinate system for separate inclined suspension members
taking into account that the sag of considered pedestrian
bridge is relatively small ( fq =1/60+1/40) (Fig 5).

Fig 4. Advanced structure of suspension pedestrian bridge: 1 — “rigid” cable, 2 — deck structure
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Fig 5. Design schemes for “rigid” suspension cable

An analysis of total structure (cable) yields the known
thrusting force:
2
(a+p)L

" alfgran) v

where Av — vertical displacement of “rigid” cable at mid-
dle span (Fig 5).

One obtains the equilibrium equation for deformed
state based on analysis of a separate inclined member

(Fig 5):

EJw (X)— H [z(x)+w(x)]+ W[%—‘:—f]: 0,

(10)

where: W(x), w (x) — displacement and its second de-
rivative of inclined cable have been calculated from line
connecting supports, respectively; Z(X) primary shape of
inclined “rigid” cable (parabola).

A fictitious displacement Af | at the cable middle
span is introduced aiming to reduce the number of iterative
calculation procedures [5]. This allows to obtain a compact
expression for determining thrusting force for left inclined
suspension element. Denoting via fg the primary sag of
left inclined element at middle span, one obtains:

__(+p)?

8(fo +Af ey ) (b

From Eq (10) one obtains formula (solution) for de-
termining displacement of “rigid” inclined element:

ax  4x° 8 1-chkl
X)=Af )| —————+ chkx+ shkx—1 |,
\N( ) fIC,l { | | 2 k2| 2 [ Shkl j|

(12)

where k=+H/EJ - slenderness parameter of inclined
cable; EJ — flexural stiffness.

Bending moment of the inclined suspension element
is calculated by:

8EJ [ chkx
= Af iy oo -1
m(x) = Af ¢ 2 [ ]2 J

(13)

Determining the inner forces and displacements of
“rigid” cable is processed iteratively, as it was mentioned
above. An elastic elongation, cable lengths prior and after
deforming are employed for the purpose [5, 27]. A conver-
gence condition for iterative calculation procedures, cou-
pling middle cross-section (hinge) displacement of whole
structure Av with fictitious displacement of separate in-
clined cable part, is described by:

Affic,l =(f0 +AV)/4 (14)

Calculation principles remain the same (only compu-
tational efforts increase) when “rigid” cable is subjected to
asymmetric load p, located at a half span of cable. Two
parts of the cable are considered, namely: the left part sub-
jected to supplement any asymmetric load p and the right
one, subjected only to symmetric load ¢g. The skew of de-
formed cable parts is valuated by ratio y. The previously
obtained expressions are employed for determining inner
forces and displacements of both cable parts. In this case
the relationship between fictitious sags (displacements) of
cable left and right parts is realised by:

ffic) = Fricr @+7). (15)

Central hinge of structure is displaced in both, verti-
cal and horizontal, directions. Convergence condition for
iterative calculation procedures is realised by:
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(@+y)

Af ﬁC,m = (fo +AV)W.

(16)

One can determine any cross-sectional displacement
W(X) and bending moment bending moment m(x) when
fictitious displacements of cable parts Af | (Afic ) and
thrusting force H are already identified.

It necessary to note that three-hinged “rigid” cables
are more efficient than the analogous two-hinged structures
(taking into account the always existing horizontal displace-
ment of cable supports).

5. Evaluation of rational parameters for “rigid” cables
of pedestrian bridge

Dominating constraints in design of a suspension pe-
destrian bridge are the stiffness ones, as mentioned above.
Elastic displacements are the governing ones in case of sym-
metric loading and kinematic displacements in case of an
asymmetric loading. The first ones can be stabilised by in-
creasing cable axial stiffness EA. Kinematic displacements
are stabilised by choosing the necessary cable flexural stiff-
ness EJ . Which of two, namely symmetric or asymmetric
loading, becomes the governing one, depends on a set of
parameters: primary sag fg, ratio of loads v, steel strength
limit fyq. Flexural stiffness EJ of a “rigid” cable can be
determined by employing the parameter k| into iterative
calculation procedures (12) for known thrusting force H,
limiting (admitted) magnitude of displacement W;.,. For
the starting point of iterative procedures the magnitude EJ
can be chosen by applying an approximate formula:

El>— 1. (17)

But for the known EJ one has not an idea what shape
and area cross-section satisfies both the aforementioned
stiffness and strength condition Gy, < fy,d “Ye. Itisob-
vious that variability design (random selection) method is
not sufficiently efficient as the chosen parameters prescribe
the magnitudes of inner forces and displacements to de-
velop. A minimum necessary area according the strength
condition is calculated by:

H e
A > 1+ s (18)

fyal 2-a?-h

where €=My, /H —eccentricity value; h; —cable cross-
sectional height; oo — form coefficient of cross-section.
Formula (18) shows that the cross-sectional area de-
pends not only on strength limit but also on its height and
form. The second item of formula (18) shows an influence
of cross-sectional area on the magnitude of bending mo-
ment. Prima facie it appears that an increment of height

results in a smaller area. But variation of cross-sectional
height causes a variation of eccentricity, which influence
the magnitude of area subsequently. One can obtain the ra-
tional cross-sectional height, ensuring the minimum area
by employing the slenderness parameter kI =I+vH/EJ .
Substituting into it the thrusting force and second moment
area magnitudes and having solved the quadratic equation,
one finally obtains the formula for rational cross-sectional
height:

he = (e 402)? + £, 4 IK?E 02 — (el 4a?)%. (19)

One can see that a cross-sectional height of “rigid”
cable depends on the ratio of inner forces (eccentricity),
the steel strength limit and its cross-sectional form. It is
obvious that a higher strength limit prescribes the higher
height of cross-section. Formulae (18)—(19) allow choos-
ing the rational cross-sectional height and area of suspen-
sion cable for selecting its form. One must note that cross-
sectional form also prescribes its area magnitude. Thus one
recommends in design of structure in each case to choose
the rational cross-sectional form, satisfying strength and
stiffness conditions for a minimal cross-sectional area. This
aim is achieved by performing the iterative calculation pro-
cedures.

Numerical simulation for choosing the rational cross-
sectional area of suspension cable was performed aiming
to view an efficiency of the obtained method and techniques.
Analytical solution method and COSMOS M FEM soft-
ware for non-linear analysis were employed for the pur-
pose. An influence of primary sag fq was also analysed.
Strength and stiffness conditions were verified in case of
symmetric and asymmetric loadings. The 20 m span cov-
ered by a suspension structure with variation of primary
sag from 0,25 till 1,0 m was considered. The rolled profiles
were designed from steel S355. It was proved that a usual
(variant) selection of profiles for “rigid” cable always yields
larger cross-sectional area versus the one obtained via ana-
lytical relations (19, 18). The chosen cross-sectional heights
were by 9-54 % smaller than the rational one. The cross-
sectional areas chosen in a usual way were by 11-58 %
larger than the ones, obtained via analytical formulae. One
must note that rolled I type profiles violated the composi-
tion principles (prescribed by formulae (19) and (18) of
rational cross-section. Welded I type profiles were applied
in this case. It was proved that having reduced the primary
sag twice (from 0,25 to 0,5 m), the rational cross-sectional
height reduced almost by 19 % under the same admitted
limit displacement magnitude ( Wjj, = L/400). Cross-sec-
tional area was reduced almost by 34 %. The latter results
prove rationality of “rigid” suspension members versus
the absolutely flexural ones. The larger kinematic
displacements, ie when stiffness conditions have a grater
influence, result the “rigid” cables to be more efficient. It
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was proved that one can save on average 35-160 % steel
resources when employing the “rigid* cables in case when

loads ratio y and primary sag fq increase.

6. Concluding remarks

The proposed advanced load-carrying structure for a
pedestrian bridge proved its technical-economic efficiency
versus usually applied flexible suspension or rc pedestrian
bridge. The proposed method and techniques for evaluat-
ing structural behaviour and choosing rational parameters
were presented via design-ready relatively simple formu-
lae, compatible with an usual conventional design. Thus
they can be easily implemented into the practical design.
The efficiency of proposed structural analysis/design tech-
niques are illustrated by a numerical simulation of cable
for advanced suspension steel pedestrian bridge. Reliabil-
ity of obtained results is confirmed by close results obtained
by a simulation of considered structure via FEM software
of non-linear analysis.
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