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Abstract. This study is devoted to the investigation of dynamic analysis of a bridge supported with many vertical supports
under a moving load. Each vertical support is modelled as a linear spring and a linear damper. The analysis is based on
Euler-Bernoulli beam theory. The present method utilises the concept of distributed moving load, spring force and damping
force, and avoids the use of matching conditions. Expressing these forces in terms of the unknown function of the problem,
it highly simplifies obtaining an exact solution. An important property of Dirac delta distribution function is utilised in order
to reach the exact solution. Considering one and three vertical supports, the response of the supported bridge is plotted and
compared to different values of parameters. In the case of an undamped bridge with no support, the results are compared
with those of previous papers.

Keywords: bridge, beam, damped, dynamic, support, moving load.

1. Introduction

Dynamic response of uniform beams, rods and bridges un-
der moving loads has received considerable attention within
the framework of Euler–Bernoulli beam theory. Especially,
dynamic behaviour of railways of infinite lengths under
moving loads has been extensively investigated by means
of integral transformations. However, these methods are
not suitable for analysing beams of finite length under mov-
ing loads, and involve complex algebra. Analysis by meth-
ods for suspension bridges (Grigorjeva et al. 2006; Idnurm
2006) and vibration analysis of beams under travelling loads
were made (Ayre et al. 1950; Fryta 1972; Green, Cebon
1994; Inglis 1934; Inman 1994) and many other papers
whose bibliographical account will not be made here.

In case of a concentrated force moving with a con-
stant velocity along the beam, neglecting damping forces,
Timoshenko (1927) found a solution and gave an expres-
sion for the critical velocity. Stanisic and Hardin (1969)
also studied the same problem for the simply supported
beam carrying a moving mass.

Esmailzadeh and Ghorashi (1992; 1995) investigated
the behaviour of a finite beam carrying moving point
masses. They have also dealt with the vibration analysis of
beams due to partially distributed masses moving with con-

stant velocity. Garinei (2006) examined the vibrations of
simple beam like modelled bridge under harmonic moving
loads. The effects of combined loads transmitted both by a
single axle (constant component + harmonic components)
and by multiple axle subsystems equally spaced have been
studied.  Using modal analysis, the deflection of a beam
subjected to an axial tensile force N and a moving vertical
force P, has been determined by Dahlberg (2006). This so-
lution was exploited in a study of the deflections and wave
propagations that occur in the contact wire of a railway
overhead a catenary system.

In order to reduce the amplitude of vibrating beam,
vertical supports can be used. The behaviour of the system
in this case is practically very important and needs to be
analysed in detail. However, since the region of solution is
divided into many parts. In case of several vertical sup-
ports and ( )14 +× z   (here z is the number of vertical sup-
ports) boundary and matching conditions are produced in
the study, the analysis results in a determinant with large
dimensions and complex eigen values. This situation re-
quires the use of pocket programs such as Matlab,
Mathematica etc. Since our aim here is to obtain explicit
expressions for the dynamic response of the mechanical
system, a rather different but easily applicable method will
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be developed. As it is shown in the following part, this
method avoids dealing with large matrices, determinants
or their calculations, thus yielding formulae for everyday
use without a computer. The second main difference of the
method is that it is developed for beams (or bridges) of a
finite length.

In this paper, as a different technique, the response of
a simply supported finite bridge which is subjected to ver-
tical supports and carries a moving force is investigated by
transforming singular moving force, spring forces and
damping forces into continuously distributed force fields
by means of the property of Dirac delta distribution func-
tion. This enables us to study with eigenvalues of hinged-
hinged finite beam.

2. Analysis

The system under consideration is shown in Fig 1. The uni-
form bridge is simply supported, bending rigidity EI and
moving force F moves at a constant velocity V

0
. Each sup-

port is modelled by a linear spring ( )ikkk ,...,, 21  and a lin-
ear damper ( )iccc ,...,, 21  located at ηiL, as in Fig 1 and
Fig 2 (0 < ηI < 1), where i = 1, 2,…, z (z – the number of
support). Horizontal displacements of the bridge are ne-
glected. The bridge is of a constant cross-section and a con-
stant mass per unit length (m). The beam (bridge) damping
is also inserted into the present analysis; it is proportional
to the velocity of vibration in the form ( )tycF ∂∂= , where
c is the damping coefficient.

According to the Euler-Bernoulli beam theory, the
governing partial differential equation describing the trans-
verse vibration of the bridge carrying the time-varying force

( )txF ,  per unit length is (Stanisic, Hardin 1969):

( )
4 2

4 2
, ,

y y y
EI m c f x t

tx t

∂ ∂ ∂
+ + =

∂∂ ∂
(1)

where E – the modulus of elasticity, N/m2; I – the second
moment of area for the cross-section of the bridge, m4; m –

the mass per unit length of the bridge, kg/m; c – the damp-
ing coefficient of the bridge, N·s/m; y – the deflection of
the bridge measured downwards from its equilibrium posi-
tion when unloaded, m.

In the present work, in contrast to the approach in
(Gürgöze, 1997; Gürgöze, Mermertas 1998), we do not di-
vide the domain of solution into parts. Instead, both damp-
ing force and the moving load are considered as distributed
loads. Through this approach, matching conditions at xi =
ηiL (i = 1, 2,…, z) do not have to be used. As clarified later,
the calculation of eigenvalues in this situation becomes very
simple.

Let the transverse displacement of the bridge be ex-
pressed by ( )., txy   Thus the boundary conditions for the
hinged-hinged beam (bridge) are:

 0=x ,  ( ) 0,0 =ty ,  ( ) 0,0 =′′ ty , (2a)

 

Lx = ,  ( ) 0, =tLy ,  ( ) 0, =′′ tLy . (2b)

We assume that the displacement ( )txy ,   in the forced
vibration of the bridge has the form

( ) ( ) ( )xXtatxy n
n

n∑
∞

=

=
1

, , (3)

where ( )tan  – unknown functions to be determined;
( )xX n  – the eigenfunctions of the same bridge in free vi-

bration. In order to determine ( )xX n , we consider the free
vibration of the system and write Eq (1) as:

Fig 1. A bridge supported with many vertical supports under a moving load

Fig 2. Physical modelling of vertical supports
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4 2
2

4 2

ω ω
0b

x t

∂ ∂
+ =

∂ ∂
,  

EI

m
b =2 , (4)

where ω  – the transverse displacement of the bridge in free

vibration.
Using the method of separation of variables, and thus

assuming  ( ) ( )ω X x T t= , Eq (4) can be separated into the
following equations:

04

4

4

=+ Xk
dx

Xd
, (5a)

0
2

4

2

2

=− T
b

k

dt

Td
. (5b)

The solution of Eq (5a) has the form:

 ( ) xkDxkCxkBxkAxX sinhcoshsincos +++= . (6)

Applying boundary conditions Eqs (2a) into Eq (6)
gives 0== CA . Other conditions (Eqs 2b) result in:

LkDLkB sinhsin0 += ,

LkkDLkkB sinhsin0 22
+−= . (7)

Thus after some simple calculations, nontrivial solu-
tion of eigenvalues is obtained:

π
n

n
k

L
= ,   = 1, 2, 3...n (8)

Since the bridge is hinged at both ends, eigenfunctions
must be taken as:

( ) xkxX nn sin= . (9)

In the present case, substituting Eq (9) by Eq (3) yields:

( ) ( ) xktatxy n
n

n sin,
1

∑
∞

=

= . (10)

Before we place Eq (10) into Eq (1), moving force F,

spring forces ( )iFy  and the viscous damping forces ( )iFd

must be expanded into Fourier sinus series to avoid the

matching conditions at ηi ix L= ,  = 1, 2, ..., i z . It is a sim-

ple matter to show that the moving force is expressed as:

( ) ( )
1

2 π
, sin sin ,n

n

F n VT
F F x t F x Vt k x

L L

∞

=

= = δ − = ∑ (11)

where ( )VTx −δ  is Dirac delta function.

Forces produced by each set of damper and spring can
be expanded into Fourier sinus series as before. We start
with the first group:

 ( ) ( ) ( )1 11 1
η , sind n nF c y L t A k x= = ∑� , (12)

( ) ( ) ( )1 1 11
η , siny n nF k y L t B k x= =∑ , (13)

where

 ( ) ( )1 11
0

2
η , sin

L

n nA c y L t k xdx
L

= ∫ � , (14)

( ) ( )1 11
0

2
η , sin

L

n nB k y L t k xdx
L

= ∫ . (15)

Substituting the expressions for ( )1
η ,y L t�  into Eqs (14,

15) yields:

( ) ( )
( )

( )1

1 1 11
0

22
η , sin sin η ,

L
n

n n n

c a t
A c y L t k xdx k L

L L
= =∫

�
�

(16)

 ( ) ( )
( )

( )1 1

1 1 11
0

22
η , sin sin η .

L

n n n

k a t
B k y L t k xdx k L

L L
= =∫

(17)

In the same way, the other groups can be written:

( ) ( )
( )

( )2

21 1
0

2
sin sin η sin ,

n
d n n n n

n

c a t
F A k x k L k x

L

∞

=

= =∑
�

(18)

 ( ) ( )
( )

( )2

222
0

2
sin sin η sin ,

n
y n n n n

n

k a t
F B k x k L k x

L

∞

=

= =∑

 ( ) ( )
( )

( )
0

2
sin sin η sin ,

Z n
d n n n Z nZ Z

n

c a t
F A k x k L k x

L

∞

=

= =∑
�

(19)

 ( ) ( )
( )

( )
0

2
sin sin η sin .

Z n
y n n n Z nZZ

n

k a t
F B k x k L k x

L

∞

=

= =∑

We take care that the spring forces ( )
iyF  and damper

forces ( )idF  are expressed in term of unknowns ( )tan  and
( )tan

� 's respectively. Inserting Eqs (10), (11) and (19) into
Eq (1) and arranging terms, we obtain:

 

( ) ( ) ( )

( )

0

0

2
sin η

2 2
sin η sinω .

n j n j n
j

m

j j j n F
j

c
a t c k L a t

m mL

EI F
k k L a t

m Lm Lm

∞

=

=

 
 + − +  

 

 
 − − =  

 

∑

∑

�� �

(20)

We introduce the following abbreviations:

( )
0

2
sin ηn j n j

j

c
D c k L

m mL

∞

=

 = −  ∑ , (21)

( )
0

2
sin η

m

j j j
j

EI
K k k L

m mL =

 = − −  ∑ , (22)

mL

F
F

2
0 = ,  π

ω .F

n V

L
= (23)

Now, Eq (20) reads:

( ) ( ) 0
sinω .n n n n Fa t D a t Ka F t+ + =�� � (24)
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The solution of homogenous part of Eq (24) is (Pala
2006):

 ( ) tsts
hn ebeba 21

21 += , (25)

where 21,bb  – constants are to be determined. The roots

21, ss  – given by:

 
2

42

2,1

KDD
s

nn −±−
= . (26)

It is clear that three cases are valid. In examining these
cases, it is convenient to define the modified critical damp-
ing coefficient, ncrD , by:

2 2ωncr n mnD K= = , (27)

where ωmn  –  the un-damped natural frequency correspond-
ing to n mode. Furthermore, the non-dimensional number

ς  called the modified damping ratio, defined by:

ς n

ncr

D

D
= , (28)

can be used to characterise the three types of solutions of
the characteristic equation. Rewriting the roots given by
Eq (26) yields:

2
1,2 ς ς 1ns K  = − ± −  

. (29)

Modified damping ratio ς  determines whether the
roots are complex or real.

In case of modified damping ratio greater than ς 1> ,
the discriminant is positive, resulting in a pair of distinct
roots. The solution of the homogeneous part of Eq (24) then
becomes

 ( ) tsts
hn ebeba 21

21 += ,  01 <s ,  2 0,s < (30)

which represents a non-oscillatory response. In Eq (30)

21,bb  are determined by the initial conditions.
In case of  0 ς 1,< <  discriminant is negative, result-

ing in a complex conjugate pair of roots. These are:

2
1,2 ς 1 ςns K i = − ± −  

, 1−=i . (31)

The solution of the homogeneous part of Eq (24) in
this case is:

( ) ( ) ( )α α

1 2
cos β sin βt t

n h
a b e t b e t= + , (32)

where 
21,bb  – determined by the initial conditions.

Recall that this solution will die out in time due to the
forcing terms F and dF . Here:

α ς ,nK= −  2β 1 ς .nK= × −  (33)

In case of  ς 1,=  which we call the modified critically

damped case, the solution takes the form

( ) ( )1 2
ˆ ˆ .

t
n h

a b b t e= + ×
α  (34)

For a proper solution of Eq (24), let us assume:

( ) γ sin ω ξ cosω .n n F n Fp
a t t= +  (35)

Substitution of Eq (35) into Eq (24) gives:

( )

( )

2
0

'
2

2 2 2

ω
γ

ω ω

n F

n

F n n F

K F

K D

−
=
 − +  

, (36)

( )
0

2
2 2 2

ω
ξ

ω ω

n F
n

F n n F

D F

K D

−
=
 − +  

.

Combining Eqs (35) and (30) to have the general so-
lution of Eq (24) for real 2,1 ss   gives:

( ) ( ) ( ) 1 2

1 2

γ sin ω cosω .

s t s t
n n nh p

n F F

a t a a b e b e

t t

= + = + +

+
 
(37)

For simplicity, we assume that the initial conditions
are in the form:

( ) 00, =xy ,  ( ) 00, =xy� . (38)

This assumption is not a restriction, and the initial
conditions may be taken as non-zero when desired. Using
these conditions in Eq (38), we can write:

( ) 00 =na ,  ( ) 00 =na� . (39)

Applying these conditions to Eq (37), yields:

2
1

1 2

ξ γ ωn n Fs
b

s s

−
=

−
, (40)

1
2

1 2

γ ω ξn F ns
b

s s

−
=

− .

If the roots 2,1 ss  – complex, then 21,bb  – given by:

1 ξnb = − ,

2

ξ α γ ω

β

n n Fb
−

= . (41)

The problem is now completely solved.

3. Results and discussions

In order to prove the validity of the method, taking the val-
ues ( ) 51004,107,2 ××=EI  Nm2,  0=c , 10=L  m,

81,970 ×=F  N, 81,97 ×=m  kg, without support ( 0=ik

and 0=ic ), given by Esmailzadeh and Ghorashi (1992)
for the case of unsupported bridge, we have plotted in Fig 3.
As clearly observed, the results of Esmailzadeh and
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Ghorashi and the present work are in excellent agreement.
As a realistic numerical example, we assume that

5
10=c  N·s/m, 5

105 ×=EI  Nm2, 1000=m  N/m,
40=L  m, 5

0 105×=F  N, 200 =V  m/s. For the bridge
supports ( 6

1
3 10k = ×  N/m, 6102×=ic  N·s/m), we con-

sider 3 cases: a) bridge with no support, b) bridge with
unique support at the middle and c) bridge with equivalent
supports at points  Lx 25,01 = ,  Lx 5,02 = ,  Lx 75,03 = .

Fig 4 compares the deflection y of the bridge at the point
20=x  m (midpoint) for values of ( 6

1 103×=k  N/m,
6102×=ic  N·s/m). Dotted line in Fig 4 corresponds to the

bridge with no support. Dashed line in Fig 4 corresponds to
the case of with unique support at the midpoint while solid
line in Fig 4 represents the case of three equivalent sup-
ports located at Lx 25,01 = ,  Lx 5,02 = , Lx 75,03 = . What
is clearly seen is that the deflections decrease with the
number of supports.

The variation of the displacement y versus x for in-

stant ( )26,12,18,04,0 −−−−=t s is shown in Figs 5a, 5b

and 5c, respectively. As expected, it is clearly seen that the
vibration amplitude of the bridge decreases with the number
of supports.

Figs 6a and 6b compare the deflection y of the bridge
at the midpoint for various locations of unique support. It
is observed that the deflection amplitude of the bridge de-
crease when the support approaches the midpoint. Thus we
conclude that the optimal solution for the location of the
unique support is Lx 5,01 =  at which the vibration ampli-
tude becomes minimum.

An important problem arising in the analysis is that
the behaviour of the bridge for large values of time t may
deviate from the actual curve, the reason of which is the
structure of Eq (24). Indeed, when the coefficient of na�

becomes too large, then the solution starts deviating from
the actual curve. Therefore for large values of t, one must
use the solution carefully. This point could be partially pre-
vented by including damping property of bridge itself into
Eq (1). This is the reason why Eq (1) in the present analysis
involves the damping property of the bridge itself. On the
other hand, time interval in the figures must not exceed the
value of time necessary for the moving load to pass across
the bridge. After this moment, the moving load starts again
to be applied to the bridge for the second time.

The present method can be generalised to involve sev-
eral moving loads. If, for example, we have N forces, thus
they can be described as:

( )2 22

2

1

π2
sin sin ,n

n

n V t tF
F k x

L L

∞

=

−
= ∑

( )3 2 33

3

1

π2
sin sin ,n

n

n V t t tF
F k x

L L

∞

=

− −
= ∑

.

.

.

( )2 3

1

π ...2
sin sin .

N NN
N n

n

n V t t t tF
F k x

L L

∞

=

− − − −

= ∑

All these terms take place on the right hand side of Eq
(19) and do not cause any mathematical difficulty. Here,

Nttt ,...,, 32  show the differences among the durations of
applied forces. NVVV ,...,, 32  are the velocities of each force.

4. Conclusions

In this work, dynamic analysis of a bridge supported by
many vertical supports under moving load has been per-
formed using Fourier sinus series approach. In this way, a
more realistic bridge model has been formed and analyti-
cally analysed. Depending on the constants involved in the
problem, whether or not a damped bridge vibrates can be

Fig 3. Variation of y with time t at the midpoint, 0=c ,

10=L  m, 81,970 ×=F  N, ( ) 5
1004,107,2 ××=EI  Nm2,

(without support)

Fig 4. Variation of the displacement y versus time t at different

points 20=x  m (midpoint)
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Fig 5. Variation of the displacement y versus x for instant ( )26,12,18,04,0 −−−−=t  s: a – bridge with no support, b – bridge with

unique support located at 20=x  m ( 6

1 103×=k  N/m,  6
102 ×=ic N·s/m), c – bridge with three equivalent supports located at

101 =x  m,  102 =x m,  103 =x m ( 6

1 103×=k  N/m,  6
102 ×=ic N·s/m)
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Fig 6. Variation of the displacement y versus time t for various

locations of unique support: a – bridge with unique support

between 10 0,5 ;x L< <   b – bridge with unique support

between  LxL << 15,0
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explained in a systematically way. In case of a bridge with
no support, the results have been exemplified, and deflec-
tion curves have been obtained for some values of param-
eters involved in the problem. Calculations have revealed
that the contributions made by the first three modes are
dominant in the deflection of the bridge. Since the results
explicitly depend on the number of modes, the present for-
mulation best explains their effects on the solution.

The results of the method have been compared with
those of Esmailzadeh and Ghorashi for the case of un-
damped beam (bridge) with no support, and found that they
are in great agreement. However, the present method does
not require the solution of coupled approximate dynamical
equations as the work of Esmailzadeh and Ghorashi does.
The present method seems easy especially, when several
moving loads and supports are considered, while the other
methods would require the numerical solution of coupled
differential and algebraic equations. The method is even
easier since no matching condition is utilised.

According to the present method, matching conditions
do not constitute a problem in the solution, and frequency
analysis is readily carried out.

As an extension of the method, one can also investi-
gate the effect of curvature on the response of the bridge
without making much change since the curved shape can
be easily expanded into Fourier sinus or cosines series.
When other methods are used, one cannot readily obtain
analytical results and is forced into using numerical tech-
niques.
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