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1. Introduction

Any bridge system and its components must be economi-
cally reasonable, structuraly appropriate and aesthetically 
satisfactory. The concrete piers of annular cross-sections 
satisfy these requirements and provide the most appropriate 
moments of inertia of cross-sections in two main directions. 
Bracing piers of bridges are fixed at their base and top in 
order to provide the load from decks to foundations. There-
fore, they can transmit to the foundations all effects caused 
by vertical and horizontal random forces and are assumed 
to contribute to the overall horizontal stability of a bridge.

The reliability verification and rationality assessment 
of structures may be made by using partial safety factors 
(in Europe) and load and resistance factors (in the USA 
and other countries) based on probability criteria or by 
applying probability-based approaches. The choice of the 
level of reliability of structural members and their sys-
tems should take into account the predicted consequences 
of failure in terms of risk in life and potential economic 
losses. However, the reliability level of columns designed 
by semi-probabilistic methods may be differ considerably 
(Diniz 2005). On the other hand, reliability verification 
formats based on probabilistic concepts help us evaluate 
objectively all uncertainties of design models and ascer-
tain effective solutions of structures.

The results of this study involve the formulations of 
limit state and safety margin criteria, as well as the per-
fections of load effects, bearing capacity and survival 
probability formats for piers of annular cross-sections re-
inforced by steel bars uniformly distributed throughout 
their perimeters. They encourage designers and highway 
engineers to use the presented unsophisticated semi-prob-
abilistic and probabilistic approaches in design practice of 
tubular piers of bridges.

2. Compressive forces and bending moments

The permanent gravity forces of piers NG = NG1 + NG2 are 
caused by self-weight of structures, G1, and roadway surfac-
ing weight, G2. The value NG1 also depends on propped and 
unpropped members of continuous beams (Kudzys et al. 
2007). The coefficients of variation of these loads are δG1 = 
0.10 and δG2 = 0.25 (Czarnecki, Nowak 2008; Eamon, Now-
ak 2004). The surfacing weight, G2, may be determined tak-
ing into account possible additional roadway topping.

For the general verifications of bridge piers, the tran-
sient live load models must cover most of the traffic ef-
fects. The representing variable live gravity and horizontal 
longitudinal forces NQ and Ql are caused by heavily-loaded 
trucks, cars and special vehicles. The horizontal force Ql 
consists of braking, temperature and wind components 
spreading out over the entire pier cap.
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Fig. 1. Modelling eccentricities (a) and simplified stresses (b) in eccentrically loaded piers of annular cross-sections

For the 75-year of girder bridges service, the coefficient 
of variation of static live loads δQst can vary from 0.14 to 0.18 
(Czarnecki, Nowak 2008; Eamon, Nowak 2004; Szerszen et 
al. 2005). For two heavily loaded trucks travelling side-by-
side, the mean value of a dynamic load factor Qdin/Qst may 
be taken as 0.10 with the coefficient of variation δQdin = 0.80 
(Eamon, Nowak 2004). Thus, the coefficient of variation of 
bridge live loads may be expressed as:

  (1)

It is equal to 0.22–0.26 and may be taken as δQ = 
0.25.

Low bracing piers (h < 15 m) may be considered as ec-
centrically loaded columns. According to EN 1992-2:2005 
Eurocode 2: Design of Concrete Structures – Concrete Bridg-
es – Design and Detailing Rules, the first order eccentricity 
of force N of bracing piers (Fig. 1a) may be given by:
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where its components ei and esh are associated with the in-
clination of a pier due to its geometric imperfection and by 
shift bearings, respectively.

According to EN 1992-1:2004 Eurocode 2: Design of 
Concrete Structures – Part 1: General Rules and Rules for 
Buildings, the nominal flextural stiffness of pier shafts with 
constant cross-sections may be represented as follows:
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where Kc – the factor for effects of cracking, creep and 
sustained loads, where Φ = 1.2–2.0 is the basic creep co-

efficient of concrete, whose value depends on its strength 
class, dimensions of cross-sections of piers and their en-
vironmental conditions; MOG = NGeo and MOE = Qlh + 
NEeo – the 1st order bending moments caused by perma-
nent and total load effects; Ec – the modulus of elasticity 
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cross-section.
The 2ndorder eccentricity of the applied compressive 

force NE = NG + NQ is defined as:
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From Eq (3), the mean and variance of a flexural stiff-
ness of pier shafts may be expressed as:
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 σ2(EI) ≈ (KcmIm)2σ2Ec + (KcmEcm)2σ2I, (8)

where the variances of the modulus of elasticity Ec and the 
moment of inertia I of considered pier shafts are calculated 
using the coefficients of variation δEc = 0.15 (JCSS 2000) 

and δI = δAc =
1 2

150 2 1

. −
−( )
r

r r
c  ≥ 0.02, where rc = 1 2 .

2
r r+

The total destroying moment of bracing piers is ex-
pressed as:

 ME = MQ + MG = Qlh + NQe + NGe. (9)

The means and variances of its components are:

 MQm = Qlmh + NQmem, (10)

 σ2MQ = h2σ2Ql + e2σ2NQ + 2
QmN σ2e +  

 2hmemσQlσNQ, (11)

 MGm = NGmem, (12)

 σ2MG = e2σ2NG + 2
GmN σ2e. (13)

When the design eccentrity ed = eo + eQld + eNd, the 
design value, MEd, of the total bending moment by (9) is 
equal to γFMEk, where γF = 1.35 (ENV 1991-3:1995. Euroc-
ode 1 – Part 3. Basis of Design and Actions on Structures. 
Traffic Loads on Bridges) is the partial safety factor for ac-
tions and MEk = Qlkh + NEked is its characteristic value.

3. Resisting moment

The modelling of stress-strain state and bearing capacity 
of eccentrically loaded concrete piers of annular cross-
sections should take into consideration their mechanical 
features. According to Вадлуга (1979, 1984), the ultimate 
bending moment MR (Fig. 1b) of columns reinforced by 
hot-rolled steel bars could be expressed as:
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The characteristic values of reinforcement strength in 
tension, fstk, and compression, fsck, should be not more as fyk 
and 500 MPa, respectively. The coefficients of variation of 
reinforcement strengths fst and fsc in tension and compres-
sion zones of cross-sections may be expressed as δfs = (δ2fs1 + 
δfs2)1/2 ≈ 0.10, where the components δfs1 ≈ 0.06 (JCSS 2000) 
and δfs2 ≈ 0.08 (Вадлуга 1979) define their statistical devia-
tions and the errors of right-angled epures of stresses. 

According to JCSS (2000), Holicky and Markova (2007), 
the mean strength of hot rolled bars in tension and compres-
sion fstm = fscm = 560 MPa. By Kudzys and Kliukas (2008), 
when high-strength coldworked steel is used, its conventional 
mean strength in tension and compression may be defined as 
fstm = 500 MPa and fscm = 600 MPa.

The compressive strength of concrete in tubular piers 
is presented as:
 fcc = αcck3 fck, (15)

where fck is its cylinder strength, MPa;

   (16)

and
 k3 = 1 – 0.004 fck ≤ 0.85 (17)

are the factors of the sustained load and stress block, re-
spectively. According to Kudzys and Kliukas (2008), the 
coefficient of variation of concrete strength is δfc = 0.089 + 
3 × (70 – fck)2 × 10–5.

For design practice, Eq (14) may be rewritten in the form:

 M
T T

TR = 2 3

1
, (18)

where  T1 = Acfcc + As(fst + fsc), (19)

 T2 = 1.2rs(As fst + N), (20)

 T3 = Ac fcc + As fsc – N. (21)

The statistics of resistance R = MR of pier shafts under 
bending with concentrical compressive force are given by:

 R
T T

Tm
m m

m
≈ 2 3

1
,  (22)

  (23)

where the variances of random variables are calculated by 
the expressions: 

 σ2fcc = (δfc × fccm)2, 

 σ2Ac = (δAc × Acm)2, 

 σ2fsc = (δfs × fscm)2, 
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 σ2fst = (δfs × fstm)2, 

 σ2N = σ2NG + σ2NQ.

Usually, the reliability verification of bridge struc-
tures is based on the limit state concept used in conjunc-
tion with partial factor methods (ENV 1991-3:1995 Euroc-
ode 1 – Part 3. Basis of Design and Actions on Structures. 
Traffic Loads on Bridges; EN 1992-2:2005 Eurocode 2: De-
sign of Concrete Structures – Concrete Bridges – Design and 
Detailing Rules; EN 1993-2:2006 Eurocode 3: Design of Steel 
Structures – Part 2: Steel Bridges). The multiplication fac-
tor, KF, should be applied to unfavourable actions using its 
value equal to 1.0 or 1.1, where consequences of failure are 
medium and high, respectively (EN 1990:2002 Eurocode: 
Basis of Structural Design). However, the indispensable re-
liability level may be not achieved for slightly and strong-
ly reinforced columns (Holicky, Markova 2007). The ap-
propriate level of structural quality and reliability of piers 
and other members of bridges may be obtained only using 
probabilistic design approaches.

4. Probability-based analysis

The safety margin of bridge piers may be defined as their 
time-dependent performance of the form:

 Z(t) = g[θ,X(t)] = θRR – θMMG – θMMQ(t), (24)

where the additional random variables θi, as profession-
al factors, represent the uncertainties of design models in 
transformation of basic variables into resisting and destroy-
ing moments (JCSS 2000; Melchers 1999). Their means and 
standard deviations may be presented as θMm ≈ 1.0, σθM ≈ 
0.10 (JCSS 2000; Holicky, Markova 2007) and θRm ≈ 1.02, 
σθR = 0.08 (Вадлуга 1979). The values 1.02 and 0.06–0.08 
also refer to the resistance of composite bridge girders (Ea-
mon, Nowak 2004) and flexural reinforced concrete mem-
bers (Nowak, Szerszen 2003).

The statistics of random bending moments may have 
the forms:
 (θMMG)m = θMmMGm, (25)

 σ2(θMMG) = θ2
Mmσ2MG + M2

Gmσ2θM, (26)

 (θMMQ)m = θMmMQm, (27)

 σ2(θMMQ) = θ2
Mmσ2MQ + M2

Qmσ2θM, (28)

where MGm, σ2MG, MQm, σ2MQ are calculated from Eqs 
(10)–(13).

The statistics of the pier resistance are defined as fol-
lows:
 (θRR)m = θRmRm, (29)

 σ2(θRR) = θ2
Rmσ2R + R2

mσ2θR. (30)

The probability distribution of permanent bending 
moment, MG, and concrete pier resistance, R, is close to a 
normal distribution (Ellingwood 1981; JCSS 2000) (ENV 

1991-3:1995. Eurocode 1 – Part 3. Basis of Design and Ac-
tions on Structures. Traffic Loads on Bridges; EN 1990-
1:2002. Eurocode 2: Design of Concrete Structures – Part 
1: General Rules and Rules for Buildings; ISO 2394:1998. 
General Principles on Reliability for Structures;). The prob-
ability distribution of bending moment MQ(t) caused by 
random live loads within 75-year reference time may be 
treated as lognormal one (Eamon, Nowak 2004) (ISO 
2394:1998. General Principles on Reliability for Structures). 
An application of the lognormal distribution is convenient 
for loads due to the road traffic consisting of the sum of 
a number of identically distributed independent lorries, 
cars and special vehicles. A stationary lognormal process 
is used in the analysis of bridge extreme live load distribu-
tion (Bhattacharya 2008).

Therefore, for the sake of simplified but fairly ex-
act probabilistic analysis of pier shafts, it is expedient to 
present Eq (24) in the form:

 Z = Rc – Mc,  (31)
where 
 Rc = θRR – θMMG, (32)

 Mc = θMMQ(t)  (33)

are the conventional resistance and bending moment of 
pier shafts, respectively. Their statistics are defined as:

 Rcm = (θRR)m – (θMMG)m, (34)

  σ2Rc = θ2
Rmσ2R + R2

mσ2θR + θ2
Mmσ2MG +  

 M2
Gmσ2θM, (35)

 Mcm = (θMMQ)m = Qlmh + NQmem, (36)

 σ2Mc = h2σ2Ql + N2
Qmσ2e + e2

mσ2NQ +  
 2hemσNQσQl + M2

cmσ2θM. (37)

The parameters Rc and Mc are statistically indepen-
dent variables. Therefore, the survival probability of piers 
may be calculated by the formula

 P PS c c R MR M f x F x dx= >{ } =
∞

∫ ( ) ( ) ,
0

  (38)

where fR(x) is the density function of Rc by (32) and FM – the 
cumulative distribution function of Mc by (33).

The survival probability of piers may be introduced 
by the reliability index

 β = Φ–1(PS),  (39)

where Φ–1(PS) – the inverse of the standard normal distri-
bution. For columns designed by limit state methods, this 
index is between 3.3 and 5.0. It increases significantly if a 
reinforcement ratio increases and a concrete compressive 
strength decreases (Diniz 2005).

According to EN 1990:2002 Eurocode: Basis of Struc-
tural Design, the target reliability index, βT, of structural 
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members may change from 3.3 to 4.3, depending on their 
failure consequence classes. For eccentrically loaded rein-
forced concrete columns and piers, the index βT must be not 
less 3.5 and may be selected equal to 4.0 because their failure 
can be more brittle comparing to a failure of bending mem-
bers (Szerszen et al. 2005; Szerszen, Nowak 2003).

5. numerical illustration

5.1. The parameters of analysis

The bracing piers (Fig. 2) of annular cross-sections of the 
cross-street bridge in Kaunas are subjected to permanent 
and variable vertical forces NG = NG1 + NG2 and NQ, as well 
as horizontal braking force Ql. Their characteristic values 
are presented as: 

 NGk = 2.45 + 0.84 = 3.29 MN, 

 NQk = 2.60 MN, 

 NEk = 3.29 + 2.60 = 5.89 MN, 

 Qlk = 0.617 MN. 

According to Eq (2), the eccentricity eo = 0.063 m. 
The geometrical and mechanical parameters of piers are 
as follows: 
 h = 6.75 m, 

 r2 = 0.75 m, 

 r1 = 0.59 m, 

 rs = 0.69 m, 

 As = 0.0225 m2 (28Ø32 S500), 

 Acm = 0.652 m2, 

  ρmr
A

Am
s

cm
= = 0 0346,= 0.0346, 

 I
r r

=
−

=π 2
4

1
4

4

4
0 1533, m= 0.1533 m4, 

  δAc = δI = 0.022, 

 σ2Ac = 0.00021 m4, 

  σ2I = 0.0000114 m8. 

According to Eurocode recommendations, the partial 
safety factors are: 
  γc = 1.5, 

  γs = 1.15, 

  γF = γG = γQ = 1.35.

The parameters of the concrete C35/45 are given by: 

 fck = 35 MPa, 

 fcm = 43 MPa, 

 αccm = 0.981, 

 k3 = 0.85, 

 fccm = αccmk3 fcm = 35.56 MPa, 

  δfc = 0.125, 

 σ2 fcc= (0.125 × 35.56)2 = 20.09 MPa2, 

Fig. 2. Bridge piers with solid (a) and tubular (b) shafts
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 αccd = 1.0, 

 Ecm = 35 GPa, 

 σ2Ec = (0.15 × 35)2 = 27.56 GPa2, 

 Ecd = 35/1.2 = 29.17 GPa. 

Thus, fccd = 
k fck

c

3

γ
 = 19.833 MPa,  Φ = 1.9.

The parameters of reinforcing bars of the class S500 B 
are defined as: 
 fyk = 500 MPa, 

 fstd = fscd =  = 435 MPa, 

 fstm = fscm = 560 MPa  
 (JCSS 2000; Holicky, Markova 2007), 

  δfs = 0.10, 

 σ2fst = σ2fsc = (0.10 × 560)2 = 3136 (MPa)2, 

 Es = 200 GPa.

The statistics θMm = 1.0, σθM = 0.1, θRm = 1.02, σθR = 0.08.

5.2. Limit state analysis
The design value of flexural stiffness by (3) for pier shafts 
is defined as: 

 

( )

2

0.3
0.2781 0.5 1.9
6.12

29170 0.1533 1286 MNm .

dEI = ×
+ × ×

× =

Thus, according to Eq (4), the design eccentricity 

 ed = eo + eQld + eNd = 0.063 + 0.0664 + 0.0089 =  
 0.1383 m.

The design values of the destroying forces and bend-
ing moments of considered piers are: 

 Qld = γFQlk = 0.833 MN, 

 NEd = γF(NGk + NQk) = 7.952 MN, 

 MEd = Qldh + NEded = 0.833 × 6.75 +  
 7.952 × 0.1383 = 6.73 MNm.

According to Eq (18), the design value of the resisting 
moment is expressed as:

 

M
T T

T
M

Rd
d d

d

Ed

= =
×

=

≈ =( )

2 3

1

14 70 14 76
32 50

6 67 6 73

. .
.

. . . MNm   MNm  

Thus, the piers are suitable for the considered bridge.

5.3. Probability-based analysis

The mean values and variances of forces are as follows: 

 NGm = NGk = 3.29 MN; 

 σ2NG = (0.1 × 3.29)2 = 0.1084 (MN)2; 

 NQm =  = 1.789 MN, 

 σ2NQ = (0.25 × 1.789)2 = 0.2 (MN)2; 

 NEm = 3.29 + 1.789 = 5.079 MN, 

 σ2NE = 0.1084 + 0.2 = 0.3084 (MN)2; 

 , 

  σ2Ql = (0.25 × 0.424)2 = 0.01124 (MN)2.

The factor . The-

refore, the statistics of flexural stiffness of piers by (7) and 
(8) are: 

 (EI)m = KcmEcmIm = 0.2825 × 35 000 × 0.1533 =  

 1516 MNm2 
and 

 σ2(EI) = (KcmIm)2σ2Ec + (KcmEcm)2σ2I =  

 52 800 (MNm2)2.

From Eqs (5) and (6), the statistics of the second or-
der eccentricity are: 

 em = 0.063 + 0.02867 + 0.00313 + 0.0017 = 0.0965 m, 

 σ2e = (0.703 + 0.003 + 0.0025 + 0.061) × 10–4 =  

 0.000077 m2.

According to Eqs (25)–(28) and Eqs (36), (37), the 
statistics of bending moments are as follows: 

 (θMMG) = MGm = NGm,em = 3.29 × 0.0965 =  

 0.318 MNm, 

 σ2(θMMG) = 3.292 × 0.000077 + 0.09652 × 0.1084 +  

 0.3182 × 0.01 = 0.00285 (MNm)2, 

 Mcm = (θMMQ)m = 0.424 × 6.75 + 1.789 × 0.0965 =  

 3.034 MNm, 

 σ2Mc = σ2(θMMQ) = 6.752 × 0.01124 + 1.7892 ×  

 0.000077 + 0.09652 × 0.2 + 2 × 6.75 ×  

 0.0965 × 0.447 × 0.106 + 3.0342 × 0.01 =  

 0.668 (MNm)2.
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According to Eqs (22), (29) and (30), the statistics of 
shaft resistance under bending with a concentrical force are: 

 

2 3

1

14.64 30.86
9.306 MNm,

48.55

m m
m Rm

m

T T
R M

T
= = =

×
=  

 (θRR)m = 1.02 × 9.306 = 9.492 MNm, 

 σ2R = 0.1253 + 0.1777 + 0.01408 = 0.3438 (MNm)2, 

 σ2(θRR) = 1.022 × 0.3438 + 9.3062 × 0.0064 =  
 0.9119 (MN)2.

From Eqs (34) and (35), the statistics of conventional 
resistance are: 

 Rcm = 1.02 × 9.306 – 0.318 = 9.174 MNm, 

 σ2Rc = 0.9119 + 0.0029 = 0.9148 (MNm)2.

According to Eqs (38) and (39), the survival probabil-
ity and reliability index of pier shafts are as follows: Ps = 
0.999958 and β = 3.93 ≈ βT = 4.0. Thus, their structural safe-
ty is sufficient and the constructive solution is effective.

The dimensions and the reinforcement of considered 
bracing pier satisfy reliability requirements of the current 
limit state and suggested probability-based design meth-
ods. The cross-sectional areas of concrete and reinforcing 
bars of solid and tubular pier shafts (Fig. 2) respectively are 
of the size: Ac = 4.73 m2, As = 0.0364 m2 and 2Ac1 = 1.304 m2 
<< 4.73 m2, 2As1 = 0.045 m2 > 0.0364 m2. However, the solid 
concrete pier is in need of a great amount of the transient 
reinforcement. There seems to be a clear rational use of 
concrete pier shafts of annular cross-sections.

6. Conclusions

The concrete bracing piers of annular cross-sections re-
inforced by steel bars uniformly distributed throughout 
their perimeter may be treated as economically reasonable 
and constructively appropriate structures for bridges. The 
analysis of bearing capacity and reliability of fairly compli-
cated eccentrically loaded shafts of piers may be success-
fully based on the semi-probabilistic and full probabilistic 
concepts and approaches, presented in this paper. In both 
cases, the destroying and resisting bending moments of 
bracing piers may be calculated in a simple engineering 
manner by Eqs (9) and (14). The statistics of a shaft resist-
ance may be expressed by Eqs (22) and (23).

For road bridges, the live load, Q, can be described by 
a lognormal distribution with a coefficient of variation δQ = 
0.25. The quantitative reliability index β by Eq (39) is indis-
pensable in the objective assessment of a structural safety 
level of bridge piers and for an acceptability of their con-
structive solutions. The target reliability index βT for pier 
shafts may be selected equal to 4.0. The presented design 
methods and their numerical illustration show that the pre-
diction of a survival probability of piers, including their reli-
ability index, may be based on unsophisticated probabilistic 

approaches. It may stimulate engineers, having a min of ap-
propriate skills, to use full probabilistic approaches in de-
sign practice more courageously and effectively.

References
Bhattacharya, B. 2008. The extremal index and the maximum of 

a dependent stationary pulse load process observed above a 
high threshold, Structural Safety 30: 34–48.

Czarnecki, A. A.; Nowak, A. S. 2008. Time variant reliability pro-
files for girder bridges, Structural Safety 30: 49–64.

Diniz, S. M. C. 2005. Effect of concrete age specification on 
the reliability of HSC columns [CD-ROM], in Proc of the 
9th International Conference on Structural Safety and Reli-
ability of Engineering Systems and Structures (ICOSSAR 
2005). Ed. by Augusti, G.; Schuëller, M.; Ciampoli, M. June 
19–23, 2005, Rome, Italy. Rotterdam: Millpress, 565–572. 
ISBN 9059660404.

Eamon, Ch. D.; Nowak, A. S. 2004. Effect of secondary element 
on bridge structural system reliability considering moment 
capacity, Structural Safety 26: 29–47.

Ellingwood, B. R. 1981. Wind and snow load statistics for prob-
ability design, Journal of the Structural Division, ASCE 107(7): 
1345–1349.

Holicky, M.; Markova, J. 2007. Reliability differentiation and pro-
duction quality in codes, in Risk, Reliability and Social Safety-
Aven & Vinnem (eds), London, 1763–1768.

Joint Committee on Structural Safety (JCSS) [on-line]. 2000. 
Probabilistic model code: Part 1 – Basis of design, JCCC-
OSTL/DIA/VROU-10-11-2000 12th draft [cited 04-Sept-
2006]. Available from Internet:<http://www.jcss.ethz.ch/ 
publications/PMC/DesBasis2a.pdf>.

Kudzys, A; Kliukas, R.; Kudzys, A. 2007. On desing features of 
propped and unpropped hyperstatic structures, Journal of 
Civil Engineering and Management 13(2): 123–129.

Kudzys, A.; Kliukas, R. 2008. The resistances of compressed spun 
concrete members reinforced by high-strength steel bars, Ma-
terials and Structures 41: 419–430.

Melchers, R. E. 1999. Structural reliability analysis and predic-
tion. 2nd edition. Chichester: John Wiley & Sons, 437 p. ISSN 
9780471987710

Nowak, A. S.; Szerszen, M. M. 2003. Calibration of design code 
for buildings (ACI 318): Part 1 – Statistical models for resist-
ance, ACI Structural Journal 100(3): 377–382.

Szerszen, M. M.; Nowak, A. S. 2003. Calibration of design code 
for buildings (ACI 318). Part 2 – Reliability analysis and re-
sistance factors, ACI Structural Journal 100(3): 383–391.

Szerszen, M. M.; Szwed, A.; Nowak, A. S. 2005. Reliability analy-
sis for eccentrically loaded columns, ACI Structural Journal 
102(5): 676–688.

Вадлуга, Р. 1979. О практическом расчете по прочности бето-
нов и железобетонных элементов кольцевого сечения 
[Vadluga, R. Practical method of strength analysis of concrete 
and reinforced concrete members of annular cross-section],  Же-
лезобетонные конструкции [Concrete Structures] 9: 49–58.

Вадлуга, Р. 1985. Оценка прочности железобетонных элемен-
тов кольцевого сечения [Vadluga, R. The evaluation of 
strength of reinforced concrete members of ring cross-sec-
tion], Железобетонные конструкции [Concrete Structures] 
14: 97–102.

Received 5 March 2008, accepted 22 Aug 2008




