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1. Introduction

Precast spun (centrifugally cast) concrete shafts of an-
nular cross-sections reinforced by steel bars uniformly 
distributed throughout their parameters and having high 
microcracking and low creep parameters satisfy economi-
cal, constructive and aesthetical requirements for bridges. 
The economically and structurally effective spun concrete 
shafts allow engineers to design and erect prefabricated 
piers subjected to vertical and horizontal forces. There-
fore, they may be successfully used in construction prac-
tice of piers of short-span road bridges and footbridges. 
In some cases, it is expedient to use high-strength rein-
forcing steel bars increasing a bearing capacity of slender 
shafts exposed to compression with a small bending mo-
ment (Kudzys et al. 1993).

Multiple-span bridges may consist of one or few brac-
ing piers and a large number of braced piers. The braced 
and bracing piers with tubular shafts may be treated as be-
ing isolated members fixed at their foundation which must 
also be fixed in the ground. The braced piers with movable 
bearings are almost free at their top and are assumed not 
to contribute to the overall horizontal stability of multiple-
span bridges. The precast spun concrete shafts may be suc-
cessfully used as bracing piers subjected to bending mo-
ments caused by vertical and horizontal forces. Therefore, 
the bracing piers should be fixed at their top.

The recommendations and directions presented in 
codes and standards for design and detailing rules of con-
crete structures EN 1992-1:2004 Eurocode 2: Design of Con-
crete Structures – Part 1: General Rules and Rules for Build-
ings and ACI 318-99:1999 Building Code Requirements for 
Structural Concrete are not fully formulated. In some cases, 
it hampers the development of analysis methods of spun 
concrete structures. Undoubtedly, the analysis of bearing 
capacity and structural safety of eccentrically loaded spun 
concrete piers under compression with a bending moment 
or bending with a compressive force has some character-
istic features. Therefore, their design in a simple and easily 
perceptible manner is desirable by design engineers.

Contemporary design codes for bridge structures pre-
scribe reliability verification methods exposed in limit state 
concepts. However, the reliability level of spun concrete piers 
designed by these concepts may differ considerably. The ac-
tual reliability level of piers may be defined only by prob-
ability-based concepts and approaches. However, for practi-
cal sake, the methodological and mathematical features of 
probabilistic approaches should be unsophisticated.

The object of this paper is stimulating the highway 
and structural engineers to use effective precast spun con-
crete shafts in bridge engineering and simplified but fairly 
exact semi-probabilistic and probabilistic approaches in 
their design practice.

precast spun concrete piers in road bridges and footbridges

Antanas Kudzys1, Romualdas Kliukas2

1 KTU Institute of Architecture and Construction,  
Tunelio g. 60, 44405 Kaunas, Lithuania, e-mail: asi@asi.lt

2 Dept of Strength of Materials, Vilnius Gediminas Technical University,
Saulėtekio al. 11, 10223 Vilnius, Lithuania, e-mail: pirmininkas@adm.vgtu.lt

Abstract. The usability of precast spun concrete members of annular cross-sections as pier shafts for road bridges and 
footbridges is discussed. The probability distribution of traffic loads is considered, their coefficient of variation is speci-
fied. First and second-order load effects for shafts of braced and bracing piers are analysed. The modeling of resisting 
compressive forces and bending moments of eccentrically loaded spun concrete shafts is considered. The features of 
mechanical properties of compressed spun concrete specimens reinforced by cold worked high-strength steel bars are 
presented. A simplified but fairly exact analysis of pier shafts under persistent situations by limit state and probability-
based approaches is provided. A design of tubular shafts of braced piers using semi-probabilistic and probabilistic reli-
ability verifications is illustrated by a numerical example.

Keywords: road bridges, spun concrete piers, high-strength steel, road traffic loads, second order effects, probability-
based design.

DOI: 10.3846/1822-427X.2008.3.187-197



188	 A. Kudzys, R. Kliukas. Precast spun concrete piers in road bridges and footbridges

2. Destroying load effects

2.1. First order effects
The destroying compressive forces and bending moments 
of pier shafts are caused by permanent and transient loads 
of persistent situations. They may be grouped into vertical 
(gravity) and horizontal actions (Fig. 1b, c).

The permanent gravity forces

	 NG = NG1 + NG2

are caused by self-weight of structures, G1, and roadway 
surfacing weight, G2. The coefficients of variation of per-
manent loads are:
	 δG1 ≈ 0.10
and
	 δG2 ≈ 0.25

(Charnecki, Nowak 2008; Eamon, Nowak 2004). The value 
NG1 also depends on propping of precast members of con-
tinuous beams (Kudzys et al. 2007).

The variable gravity, NQ, and horizontal braking, Ql, 
live forces are caused by heavily-loaded trucks, cars and spe-
cial vehicles. The forces Ql may include temperature, con-
crete shrinkage and wind components. It is assumed that 
these horizontal forces act in longitudinal direction and are 
spread out over the entire pier cap of bracing piers.

The static, Qst, and dynamic, Qdin, live loads of road 
girder bridges were investigated by Eamon and Nowak 
(2004) and Charnecki and Nowak (2008). It was deter-

mined that the coefficient of variation of static live loads, 
δQst, varies from 0.11 to 0.14–0.18 for a single and two 
heavily loaded trucks and the mean value of a dynamic 
factor may be taken as 

	

Q
Q

din m

st m

,

,
. .= 0 15 0 10 or 

with the coefficient of variation, δQdin, equal to 0.80. The 
coefficient of variation of live loads and forces for road 
girder bridges may be expressed as:

	 δ
δ δ

Q
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Q
Q
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For new bridges, the dynamic factor may be equal to 0.25 
or 0.15. Thus, δQ by (1) can be introduced from 0.23 to 
0.26 and may be taken equal to 0.25 or 0.30, when conse-
quences of failure can be medium or high, respectively.

According to European Standards, the reliability veri-
fication of bridge structures is based on the limit state con-
cept used in conjunction with partial factor methods. Us-
ing these design approaches, the multiplication factor, KF1, 
should be applied to unfavourable actions using its value 
equal to 1.0 or 1.1, when consequences of failure may be 
medium or high, respectively, as it is recommended by EN 
1990:2002 Eurocode: Basis of Structural Design.

Fig. 1. Modelling of cross-sections (a) and eccentricities for spun concrete shafts of braced (b) and bracing (c) piers
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According to ENV 1991-3:1995 Eurocode 1 – Part 3. 
Basis of Design and Actions on Structures. Traffic Loads on 
Bridges, the design values of load forces are equal to

	 NEd = 1.35(NGk + KF1NQk),

	 Qld = 1.35KF1Qlk,

where NGk, NQk and Qlk are their characteristic values.
According to EN 1992-2:2005 Eurocode 2: Design of 

Concrete Structures – Concrete Bridges – Design and Detail-
ing Rules recommendations, the flexural stiffness of pier 
shafts with constant cross-sections may be represented as 
follows:
	 EI = KcEcI,	 (2)
where

	 K
M
M

c
OG

OE

=
+

0 3

1 0 5

.

. Φ
             	            (3)

is the factor for effects of quasi-permanent loads, cracking 
and creep of concrete, where Φ = 1.2–2.0 – the basic creep 
coefficient of concrete whose value depends on its strength 
class, dimensions of cross-sections of pier shafts and envi-
ronmental conditions;

	 MOG = NGeo and MOE = Qlh + NEe0

are the 1st order bending moments caused by permanent 
and total actions. For braced piers, the horizontal force

	 Ql = 0
and

	
M
M

N
N
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G

E
= ;

Ec – the modulus of elasticity of a concrete;

	 I I
r r

m= =
−( )π 2

4
1
4

4

is the moment of inertia of a cross-section, where r2 and 
r1 – the radii of annular cross-section circles (Fig. 1a).

The mean value of the modulus of elasticity of a spun 
concrete may be defined by:

	 Ecm = 20(0.1fcm)0.3,             	            (4)

where fcm – the mean value of concrete cylinder strength, 
MPa; JCSS 2000 Probabilistic Model Code – Part 1: Basis of 
Design suggests the coefficient of variation

	 δEc = 0.15.

The coefficients of variation of cross-sectional area, 
A, and moment of inertia, I, of members may be deter-
mined by:

	 δ δA I
r r

r r
= =

− +( )
−( )

1 2 0 5
150

2 1

2 1

. .
.                 	  (5)

According to EN 1992-1:2004, the design stiffness of shafts, 
(EI)d, may be calculated from Eq (2), where

	

M
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and Ec

are substituted by
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.

The mean and variance of a flexural stiffness may be 
presented as:
	 (EI)m ≈ KcmEcmIm,           	                  (6)

	 σ2(EI) = (EcmIm)2σ2Kc +  
	 (KcmIm)2σ2Ec + (KcmEcm)2σ2I, 	 (7)

where the component statistics are:
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	 σ2Ec = (δEc × Ecm)2 = (0.15Ecm)2;     	         (10)

	 σ2I = (δI × Im)2 with δI by Eq (5).    	          (11)

According to EN 1992-2:2005 directions, the 1st order 
eccentricity of a compressive force

	 NE = NG + NQ

of piers (Fig. 1) may be given by:

	 e0 = ei + esh,                 	                (12)
where

	
e

h
h

hi = ≥
0 005

0 00167
.

.

and

	
e

h
i =

400
are the inclination of in situ and precast piers, respectively, 
due to their geometrical imperfections;

	
e

r
sh = ≥2

15
20 mm

is the shift of a bearing due to its movement or execution 
imperfections.

2.2. Second-order effects for braced piers

The buckling load of a shaft of braced piers may be ex-
pressed in terms of EI by Eq (2) and given by:
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Its design value, mean an variance follow from:
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where the parameters Ecm by Eq (4),

	
E

E
cd

cm=
1 2.

,

Kcm – by Eq (8); σ2Kc – by Eq (9); σ2Ec – by Eq (10); σ2I – 
by Eq (11);
	 l0m = h
and
	 σ2l0 = (δl × h)2 ≈ (0.1h)2.

Due to geometric imperfections, a buckling failure of 
a shaft under perfectly concentric compression is not a rel-
evant limit state of piers. According to EN 1992-1:2004, a 
buckling load can be used as a parameter in their 2nd order 
analysis assuming that the 2nd order bending moment has 
a sine-shaped distribution. For braced piers (Fig. 1b), the 
2nd order eccentricity of the applied compressive force NE 
is defined as:
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where NB – by Eq (13); c0 = 8 for a constant 1st order bend-
ing moment. The design value, mean and variance of a 2nd 
order eccentricity may be written as follows:
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where NBd, NBm and σ2NB – given by Eqs (14)–(16):

	 NEd = 1.35(NGk + KF1NQk),

	 NEm = NGm + NQm,

	 σ2NE = σ2NG + σ2NQ.

2.3. Second-order effects for bracing piers

The second-order eccentricity of the applied compressive 
force N (Fig. 1c) is of the form:
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Its design value, mean and variance are as follows:
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For bracing piers, the total destroying moment and its 
design value are expressed as:

	 ME = MG + MQ = NGe + NQe + Qlh,     	       (25)



The Baltic Journal of Road and Bridge Engineering, 2008, 3(4): 187–197	 191

	 MEd = NGded + NQded + Qldh.    	             (26)

where NGd = 1.35NGk, NQd = 1.35KF1NQk, Qld = 1.35KF1Qlk.

3. Resisting compressive forces and bending moments

3.1. Compression with a bending moment
The compressive strength of spun concrete in bridge piers 
may have the form
	 fcc = αcck2fck,                     	             (27)

where the sustained load factor is expressed as:

	
α αcc

P

E
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N
N

M
M

= − = −1 0 1 1 0 1. . ,or         	(28)

and the strength factor is defined by:
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where

	
ρ =

A
A

s

c

is the reinforcement ratio (Fig. 1a); fck – characteristic cylin-
der strength, MPa. The coefficient of variation of this strength 
may be expressed by the Eq

	 δfc = 0.088 + 3(70 – fck)2 × 10–5,   	        (30)

where fck is in MPa (Kudzys, Kliukas 2008).
The ultimate compressive stresses in reinforcing steel 

bars of concentrically and eccentrically loaded shafts of 
braced and bracing piers, respectively, may be defined as:

	 σ’sc = 452(1.18 + 4ρ) (MPa),   	             (31)

	 σsc = 452(1.36 + 4ρ) (MPa).           	     (32)

According to test data, these values were not more 
as yield strength fy and 800 MPa for hot rolled and cold 
worked steel bars, respectively, and were close to the stress-
es calculated by Hussaini et al. (1993) recommendations. 
The standardized second central moment of ultimate com-
pressive stresses may be expressed as

	 δσ δσ′ = =sc sc 0 105. .

The shafts of braced piers, usually, are under compres-
sion with a small bending moment. The modelling of strain 
and stress distribution in concrete and high-strength steel 
of eccentrically loaded shafts may be based on a plane cross-
section hypothesis and bi-linear concrete strain-stress rela-
tion when the conventional strain of concrete at its peak 
stress is equal to 0.5εcu (Fig. 2).

When the eccentricity ratio

	

e
rs

≤ 1,

the response factors, characterizing an extent of the intel-
ligent use of the compressive resistance of concrete and re-
inforcement cross-sections, may be calculated by the fol-
lowing Eqs:
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where fcc – given by Eq (27); ′σsc – by Eq (31).
Using the response factors kc and ks, given by Eqs (33) 

and (34), the resisting compressive force NR or the resist-
ance RN of eccentrically loaded shafts of annular cross-sec-
tions of braced piers may be presented in the form:

	
R N

k A f k A r
e rN R

c c cc s s sc s

s
= =

+ ′( )
+

σ
,      	     (35)

where fcc – given by Eq (27), ′σsc – given by Eq (31), e – de-
fined by Eq (17).

According to the partial safety factors design (PSFD), 
the design value of this resistance can be considered as:

	 R N
k A f k A r

e rd Rd
cd c ccd sd s scd s

d s
= =

+ ′( )
+

σ
,  	    (36)

Fig. 2. The modelling of strain and stress distribution in the concrete and high-strength reinforcement of braced piers
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where
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with safety factors for materials

	 γc = 1.5
and
	 γs = 1.15

recommended by EN 1992-1:2004; ed – given by Eq (18).
The statistics of resistance RN may be presented in the 
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where the variances of random variables of this resistance 
are:
	 σ2fcc = (δfcc × fccm)2,

	 σ2Ac = (δA × Acm)2,

where δA – defined by Eq (5);

	 σ σ σ2 20 105′ = ′( )sc scm. ;

σ2e – given by Eq (20),
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The standardized 2nd central moment of concrete 
strength in compression zones of shafts may be defined as:

	 δ δ δf f fcc c c= +( ) =2
1

2
2

1
2 0 145. ,

where its components

	 δ δσfc sc1 0 105= ′ ≈ .
and
	 δfc2 = 0.08 – 0.12 ≈ 0.10

as the coefficients of variation define the ultimate defor-
mations of a spun concrete and the error of its bi-linear 
stress-strain relation. The values presented in braces of Eq 
(38) may be omitted if the approx coefficient of variation

	 δfcc = 0.16
is applied.

3.2. Bending with a compressive force
According to Vadluga (Вадлуга 1985), the ultimate bend-
ing moment MR of shafts of annular cross-sections (Fig. 3) 
reinforced by hot-rolled steel bars could be expressed as 
follows:
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Fig. 3. The modelling of stress distribution in the reinforcement 
and concrete of bracing piers

The characteristic strength of reinforcement in ten-
sion, fstk, and compression, fsck, should be not more as fyk 
and 500 MPa, respectively. The compressive strength of 
concrete, fcc, is given by Eq (27). When a high-strength 
cold worked steel is used, its mechanical parameters may 
be defined as:
	 fstm = 500 MPa,

	 fstk = 0.9fstm = 450 MPa,

	 fscm = 600 MPa,

	  fsck = 0.9fscm = 540 MPa.

For design practice, Eq (39) may be rewritten in the form:

	
M

T T
TR = 2 3

1
,                      	            (40)

where
	 T1 = Acfcc + As(fst + fsc);         	         (41)

	 T2 = 1.2rs(Asfst + N);             	        (42)
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	 T3 = Acfcc + Asfsc – N.           	          (43)

The design value of resisting moment, MRd, may be 
calculated by Eq (40) using the design values of strength 
of materials
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for hot-rolled steel bars and 
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for cold worked reinforcement.
The statistics of resistance RM = MR of pier shafts un-

der bending with concentrical compressive force may have 
the forms:
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with the following variances of variables:

	 σ2fcc = (δfc × fccm)2,

	 σ2Ac = (δAc × Acm)2,

	 σ2fsc = (δfs × fscm)2,

	 σ2fst = (δfs × fstm)2,

	 σ2NE = σ2NG + σ2NQ.

The coefficients of variation of steel strengths fst and 
fsc may be modelled as:

	
δ δ δf f fs s s= +( ) ≈2

1
2

2

1
2 0 10. ,

where the components

	 δfs1 ≈ 0.06
and
	 δfs2 ≈ 0.08

define their statistical uncertainties and the errors of right-
angled epures.

The indispensable reliability level may not be achieved 
for strongly reinforced members under compression 
(Holicky, Markova 2007). The appropriate level of struc-
tural quality and reliability of piers and other members of 
bridges may be obtained only using probabilistic design 
approaches.

4. Probability-based design

4.1. Reliability index and model uncertainties
The generalized reliability index as a standard reliability 
measure of bridge members may be defined as:

	 β = Φ–1Ps,                               	    (46)

where Ps – the survival probability of a member and  
Φ–1(•) – the inverse Gaussian distribution. For columns 
designed by limit state approaches, this index is between 
3.3 and 5.0. Its value increases significantly when a rein-
forcement ratio increases and a compressive strength of 
concrete decreases (Diniz 2005).

According to EN 1990:2002, the target reliability in-
dex, βT, of structural members may be selected from 3.3 
to 4.3 depending on their failure consequence classes. For 
eccentrically loaded reinforced concrete columns (beam-
columns) and piers, the index βT must be not less than 
3.5. The failure of a pier can be more brittle compared to 
the failure of bridge span members and have influence on 
their structural safety. Therefore, this index may be select-
ed equal to 4.0 (Nowak, Szerszen 2003; Szerszen, Nowak 
2003; Szerszen et al. 2005). This value corresponds to the 
survival probability of pier shafts, Ps, equal to 0.999968.

Usually both the resistance of a pier shaft and its ac-
tion effects may be treated as stationary random process-
es. The safety margin of shafts of braced and bracing piers 
may be defined, respectively, as their performances of the 
forms:

	 ZN(t) = g[θN,XN(t)] = θRNRN – θNNG – θNNQ(t),  	 (47)

	 ZM(t) = g[θM,XM(t)] =  
	 θRMRM – θMMG – θMMQ(t),	 (48)

where the components of the vector θ of additional ran-
dom variables, as professional factors, represent the uncer-
tainties of design models in transformation of the vector 
X(t) of variables into resisting and destroying action ef-
fects (Melchers 1999).

According to Ellingwood (1981), Melchers (1999), 
ENV 1991-3:1995, EN 1990:2002, JCSS 2000 and ISO 
2394:1998 General Principles on Reliability for Structures, 
the probability distributions of concrete shaft resistance RN 
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or RM and permanent action effect NG or MG are close to a 
normal distribution.

An application of a lognormal distribution is conven-
tional for loads due to the road traffic consisting of the sum 
of a number of identically distributed independent lorries, 
cars and special vehicles. A stationary lognormal process is 
used by Bhattacharya (2008) in his investigations of bridge 
extreme loads. Thus, the probability distribution of live 
load effects may be treated as a lognormal one as it is rec-
ommended by ISO 2394:1998, Eamon and Nowak (2004). 
According to JCSS 2000, Holicky and Markova (2007), the 
means and standard deviations of the uncertainties of ac-
tion effects for columns may be defined as:

	 θNm = θMm ≈ 1.0,

	 σθN = σθM ≈ 0.1.

The additional uncertainties of shaft resistances, rep-
resenting the ratio between their actual and predicted val-
ues, may be expressed by its mean, θRm, and standard devi-
ation, σθR. According to test data determined by Vadluga 
(Вадлуга 1985), Kudzys and Kliukas (2008), these statis-
tics may be defined as:

	 θRNm = 0.99, σθRN = 0.08
and
	 θRMm = 1.02, σθRM = 0.08

for the shafts of braced and bracing piers, respectively. The 
standard deviation

	 σθR = 0.06 – 0.08

is recommended by Szerszen et al. (2005) as statistical param-
eter for reliability analysis of eccentrically loaded columns.

4.2. Survival probabilities

For the sake of simplified but fairly exact probabilistic 
analysis of pier shafts, it is expedient to present Eqs (47) 
and (48), respectively in the form:

	 ZN = RCN – NC or ZM = RCM – MC,  	          (49)

where

	 RCN = θRNRN – θNNG or RCM = θRMRM – θMMG  	  (50)

are the conventional resistances of shafts and 

	 NC = θNNQ or MC = θMMQ               	           (51)

are the action effects caused by live loads of road bridg-
es. The parameters RCN and NC, RCM and MC of the safety 
margins by Eqs (49) are statistically independent variables. 
The statistics of components of these safety margins may 
be expressed as:

	 RCNm = θRNmRNm – θNmNGm,               	    (52)

	

σ θ σ σ θ

θ σ σ θ

2 2 2 2 2

2 2 2 2

R R R

N N
CN RNm N Nm RN

Nm G Gm N

= + +

+ ,    	     (53)

	 NCm = θNmNQm,                         	    (54)

	 σ θ σ σ θ2 2 2 2 2N N NC Nm Q Qm N= + ,        	     (55)

	 RCMm = θRMmRMm – θMmMGm,  	             (56)
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	 MCm = θMmMQm = θMm(NQmem + Qlmh),   	  (58)
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(59)

The survival probabilities of pier shafts may be calcu-
lated by the Eqs:

	
P PSN N R Nf x F x dx

CN C1 1
0

= =
∞

∫( ) ( ) ( )β ,     	     (60)

	
P PSM M R Mf x F x dx

CM C1 1
0

= =
∞

∫( ) ( ) ( )β ,    	    (61)

where fRCN
, fRCM

 are the density functions of normally dis-
tributed variables RCN and RCM given by Eq (50) and FNC

, FMC
 

are the cumulative distribution functions of lognormally dis-
tributed live action effects NC and MC expressed by Eq (51).

5. Numerical example

5.1. The parameters of design
The precast spun concrete shafts of annular cross-sections 
of braced piers are subjected to permanent, G1, sustained, 
G2, and live, Q, loads. The characteristic values of gravity 
compressive forces are presented as:

	 NGk = NG1k + NG2k = 1.08 + 0.38 = 1.46 (MN)

and	
	 NQk = 1.82 MN.

According to Eurocode recommendations, the partial 
safety factors are:

	 γF = γG = γQ = 1.35,

	 γC = 1.5,

	 γS = 1.15.

The multiplication factor for actions

	 KF1 = 1.0
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(for medium consequences of failure).
The statistics and design values of forces are as fol-

lows:
	 NGm = 1.46 MN,

	 σ2NG = (0.1NG1m)2 + (0.25NG2m)2 = 0.0207 (MN)2,

	
N

N
QQm

Qk=
+

=
+ ×

=
1

1 82
1 1 82 0 25

1 25
0 95γ δ.

.
. .

. ( )MN ,

	 σ2NQ = (δQ × NQm)2 = (0.25 × 1.25)2 = 0.0977 (MN)2,

	 NEm = NGk + NQm = 1.46 + 1.25= 2.71 (MN),

	 σ2NE = 0.0207 + 0.0977 = 0.1184 (MN)2,

	 NGd = 1.35 × 1.46 = 1.971 (MN),

	 NQd = 1.35 × 1.82 = 2.457 (MN),

	 NEd = 1.971 + 2.457 = 4.428 (MN).

The parameters of pier shafts are as follows:

	 h = l0 = 6.1 m,

	 δl0 ≈ 0.1,

	 σ2l0 = (0.1 × 6.1)2 = 0.372 m2,

	 r2 = 0.30 m,

	 r1 = 0.20 m,

	 rs = 0.25 m,

	 As = 0.00502 m2 (16∅20 S800),

	 Acm = 0.152 m2,
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	 σ2Ac = 92.6 × 10–6 m4,

	 σ2I = 0.104 × 10–6 m8,
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According to Eq (12), the 1st order eccentricity
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The parameters of the concrete C50/60 are given by:

	 fck = 50 MPa,

	 fcm = 58 MPa,
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	 k2m = 0.85 – 1.7 × 0.033 = 0.794,

	 fccm = 0.946 × 0.794 × 58 = 43.56 (MPa),

	 δfcc = 0.16,

	 σ2fcc = (0.16 × 43.56)2 = 48.57 (MPa)2,

	 Ecm = 20(0.1 × fcm)0.3 = 33.89 (GPa),

	 σ2Ec = (0.15 × 33.89)2 = 25.84 (GPa)2,
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	 Ф = 1.5.

The parameters of reinforcing high-strength bars are 
defined as follows:
	 f0.2k = 800 MPa,
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The statistics of additional random variables are:

	 θNm = 1.0,

	 σθN = 0.10
and
	 θRm = 0.99,

	 σθR = 0.08.

5.2. Limit state design

The design value of buckling load for pier shafts by Eq (14) 
is defined as:
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According to Eq (18), the 2nd order eccentricity is:
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In this case, the design values of shaft response fac-
tors by Eqs (33) and (34) are expressed as follows:
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According to Eq (36), the design resisting force of 
shafts is presented as:
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It shows that the analysed precast spun concrete 
shafts are suitable for bridge braced piers. However, when 
the consequences of failure may be high (KF1 = 1.1), the 
compressive force Ned = 4.674 MN is inadmissibly more 
than NRd = 4.354 MN.

5.3. Probability-based design

According to Eq (8), the stiffness factor
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Therefore, the statistics expressed by Eqs (15) and 
(16) are presented as:

	 NBm ≈ × =π2
20 214 33890

0 005105
6 1

9 806.
.

.
. ( ),MN

	 σ2NB ≈ 0.0837 × 10-6 × 25.84 × 106+ 
	 3.69 × 106 × 0.104 × 10–6 + 
	 10.33 × 0.372 + 2105 × 71.6 10-6 = 6.543 (MN)2.

The statistics of 2nd order eccentricity by Eqs (19) and 
(20) are:
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The mean values of response factors by Eqs (33) and 
(34) are:
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Then, according to Eqs (37) and (38), the statistics of 
resistance RN = NR are:

	

RNm = × × + ×

×
+

=

( . . . .

. )
.

. .

0 953 0 152 43 56 0 929

0 00502 593
0 25

0 0519 0 25
7..517 (MN),

	 σ2RN = 0.0144 × 48.57 + 1182 × 92.6 × 10–6 + 
	 14.93 × 10–6 × 3877+ 1102 × 43.5 × 10–6 = 0.914 (MN)2.

According to Eqs (52), (53) and (54), (55), the means 
and variances of conventional resistance, RNC, and destroy-
ing variable live force, NC, are:

	 RNCm = 0.99 × 7.517 – 1.0 × 1.46 = 5.982 (MN),

	 σ2RNC ≈ 0.992 × 0.914 + 7.5172 × 0.0064 + 
	 1.02 × 0.0207 + 1.462 × 0.01 = 1.30 (MN)2,

	 NCm = 1.0 × 1.25 = 1.25 (MN),

	 σ2NC = 1.02 × 0.0977 + 1.252 × 0.01 = 0.1133 (MN)2.

Thus, according to Eqs (60) and (46), the survival 
probability and reliability index of pier shafts are equal to 

	 PSN1 = 0.999954
and
	 βN1 = 3.91.

It shows that their structural safety is sufficient and 
constructive solution is effective, i.e.

	 βN1 ≈ βT (= 4.0).

When the consequences of failure may be high and 
δQ = 0.30, the reliability index of analysed piers βN1 = 3.79 
may be to small.

5.4. On acceptability of probability distribution laws
The data given in Tables 1 and 2 show, that all design vari-
ables RN, NG and NQ or RM, MG and MQ cannot be adequately 
modelled only by the normal or lognormal distribution laws. 
It may lead designers to an overestimation of predicted re-
liability indices of shafts. As it is shown, case 1 of probabil-
ity distribution laws for the components of safety margins of 
considered pier shafts corroborated its acceptability in prob-
ability-based analysis of bridge piers.

6. Conclusions

The design features of economically reasonable precast 
spun concrete pier shafts depend on constructional solu-
tion of braced and bracing piers of road bridges and foot-
bridges. The analysis of load-carrying capacity and struc-
tural reliability of pier shafts of annular cross-sections 
reinforced by steel bars uniformly distributed throughout 
their perimeter may be determined by unsophisticated 
semi-probabilistic and probability-based concepts and ap-
proaches demonstrated in this paper. They may stimulate 
engineers having min appropriate skills to use full proba-
bilistic approaches in design practice more courageously.
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For shafts of annular cross-sections of braced and 
bracing piers, the 2nd order eccentricities of destroying 
forces may be expressed in a simple and easily perceptible 
manner. It is expedient to analyse the eccentrically loaded 
spun concrete shafts of braced and bracing bridge piers as 
the columns under compression with a bending moment 
and under bending with a compression force, respectively.

The objective assessment of structural safety level for 
bridge pier shafts may be introduced only by reliability index 
β using proper distributions for the components of their safety 
margins. The data presented in this paper corroborated that 
a lognormal distribution is to be used for variable live actions 
and a Gaussian distribution may be used for the joint values 
of permanent effects and shaft resistances. For spun concrete 
shafts of piers, the target reliability index βT may be selected 
equal to 4.0, as it is recommended by the investigators in the 
USA for eccentrically loaded reinforced concrete columns.
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Table 1. The reliability indices for the shaft of a braced pier

Forces Mean, 
MN

Variance, 
(MN)2

Case 1 Case 2 Case 3
Distribution βN1 Distribution βN2 Distribution βN3

θRNR = θRRN 7.442 1.2578 Normal Normal Lognormal
θNNG 1.460 0.0420 Normal 3.91 Normal 3.98 Lognormal 4.85
θNNQ 1.250 0.1133 Lognormal Normal Lognormal

Table 2. The reliability indices for the shaft of a bracing pier (Kudzys and Kliukas, 2008)

Forces Mean,  
MN

Variance, 
(MN)2

Case 1 Case 2 Case 3
Distribution βM1 Distribution βM2 Distribution βM3

θRMR = θRMN 9.492 0.9119 Normal Normal Lognormal
θMMG 0.318 0.0030 Normal 3.93 Normal 4.88 Lognormal 4.08
θMMQ 3.034 0.6680 Lognormal Normal Lognormal




