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1. Introduction

The FWD (Falling Weight Deflectometer) test is operated 
by dropping a certain level of mass and measuring the max 
surface deflections using several sensors by equal spaces 
(Fig.  1). The FWD is most widely used to evaluate the 
structural integrity of an asphalt concrete (AC) pavement 
system. Many studies have been carried out with the objec-
tive of improving the testing method and the evaluation 
schemes of the conventional FWD test (Aavik et al. 2006; 
Al-Khoury et al. 2001a, 2001b; Bertulienė, Laurinavičius 
2008; Choi et al. 2002; Dong et al. 2002; Jo et al. 2003; 
Kim, Kim 1998; Liang, Zhu 1995; Yun et al. 1995).

Most commercialized FWD systems utilize regres-
sion analysis that uses a large-scale database and/or the 
iterative optimization schemes for estimating the elastic 
modulus (E) of soil layers.

In this study, the artificial neural network (ANN) 
technique, which is one of the most widely used soft com-
puting techniques in the civil engineering field, is applied 
to evaluate the structural integrity of a pavement system. 
In most cases, the modeling errors due to the uncertainties 
in the material properties such as layer thickness, Poisson 
ratio, unit weight, and damping ratio were not seriously 
considered while carrying out the inverse analysis using 
the FWD test data. However, it is almost impossible to ex-
actly assign the material properties and it is therefore in-
evitable that a certain level of modeling errors will arise. 
With regard to this, it is very important to investigate the 
effects of modeling errors while considering the uncer-
tainties in the material properties on the max deflection 
data of the FWD test. To this end, we carried out the reli-
ability analysis that allowed for the uncertainties. An in-
verse analysis was also carried out that used the ANNs, 
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both with and without modeling errors. We also proposed 
an alternative scheme in order to generate training pat-
terns that consider the modeling error, utilizing the newly 
developed computer code, wave analysis of layered system 
(WALS), which is based on the spectral element method, 
for a more accurate and faster calculation. This was carried 
out in order to improve the estimation results in the cases 
where the modeling error occurred.

2. Theoretical backgrounds

2.1. Spectral element method 
The wave propagation in a multi-layered system can be 
analyzed using several commercial computer codes such 
as ABAQUS and ANSYS. It can also be performed using 
many other specialized codes for wave propagation analy-
sis such as BISAR, CHEVRON, ELSYM5, and WESLEA. 
Generally, too much computing time is required to gener-
ate a number of training patterns using general-purpose 
commercial codes. Furthermore, the analysis is carried out 
inaccurately when the specialized and compact-sized com-
puter codes are applied. Therefore, a new computer code, 
WALS has been developed, which is theoretically based on 
the dynamic stiffness matrix method and the spectral ele-
ment method to achieve a more accurate and faster calcu-
lation (Al-Khoury et al. 2001a; Kim, Mun 2008; Yun et al. 
1995). The developed software has been used to simulate 
the FWD test, in order to carry out the reliability analysis 
and to generate the training and testing patterns for ANN 
modeling (Kim, Mun 2008).

2.2. Artificial neural networks (ANNs) and noise 
injection training
In this study, the E of pavement layers are estimated using 
a multi-layered perceptron neural network (NN), which is 
based on the max deflection data obtained from the FWD 
test as input data. An error back propagation algorithm is 

used as a training strategy to train the NNs, while the max 
deflection data and the corresponding E are used as input 
and output (target) data, respectively.

Since the theoretical backgrounds of the general 
training rules for NN’s are referred to in many research 
papers, in this paper we intend to only introduce the basic 
concept of a noise injection learning algorithm (Matsuoka 
1992; Yun, Bahng 2000). This algorithm improves the gen-
eralization capability of a NN by imposing random noise 
in the input data during the training process. This is car-
ried out by a similar scheme to the proposed generation al-
gorithm training patterns that consider modeling errors. A 
crucial problem with the BPNN (Back-propagation Neu-
ral Network) is its generalization capability. Usually, train-
ing patterns used for learning are taken from only a limit-
ed number of samples selected from a population of input 
and output patterns. Hence, a network successfully trained 
to a given set of samples may not provide the desired input 
and output associations for untrained patterns, particu-
larly in the case where there are measurement noises and 
property uncertainties. Concerning this problem, several 
researchers have reported that adding a quantity of noise 
to the input patterns during the back propagation learn-
ing process can remarkably enhance the generalization 
capability of the resultant networks, if the mapping from 
the input space to the output space is smooth. Matsuoka 
(1992) found that the noise injected into the input reduces 
the sensitivity of the network to the variation of the input; 
that is, it creates smooth mapping from the input space to 
the output space (Matsuoka 1992; Yun, Bahng 2000). In 
the case of the FWD tests, the noise injection learning can 
be performed by imposing a certain level of random noise 
(α) to the input data as follows,

	 	 (1)

where xij  – the input data (the max deflection at the jth 
measuring point of the ith training pattern); pi, hi, Ei, ρi 
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Fig. 1. Layered pavement structure and FWD test setup
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and γi – the amplitude of impact load, layer thickness, E, 
Poisson ratio, and damping ratio of the ith training pattern 
respectively; α – the Gaussian random noise with 0 mean 
and σ (standard deviation). Since we need to estimate only 
the E in this problem, the other parameters can be fixed 
as the representative values, i.e., pi = p, hi = h, ρi = ρ, γi = γ. 
The function  represents the max deflection at the 
jth measuring point by the FWD test. By introducing the 
noise injection learning algorithm, similarly to Eq (1), to 
the NN, a more reliable estimation can be carried out when 
the measurement data is corrupted by measurement noise. 
However, the noise injection learning can only reduce the 
effects of the measurement noise and it is not sufficient to 
reduce the effects of the modeling errors included in the 
numerical model. Therefore, we proposed an alternative 
generation scheme of training patterns that considers the 
modeling errors, as follows:

	 (2)

where βk – the Gaussian random noise with 0 mean; σk – 
the standard deviation for the kth material parameter. It is 
understood that Eq (1) for the conventional noise injec-
tion learning takes into account the output errors in the 
FWD test.

Also, Eq (2) for the proposed generation scheme con-
siders the input error in the numerical model, especially 
an inevitable heterogeneity of E of the pavement layer that 
was made during the compaction process.

3. Example analysis 

3.1. Example asphalt pavement systems
Predicting the depth to the bedrock is one of the practical 
and yet most difficult issues that need to be addressed in 
the analysis of in situ pavement data. Two different layered 
pavement systems were therefore considered in order to 
create 2 networks according to the bedrock depth. 1 pave-
ment system consists of 3 layers, i.e. AC surface, subbase, 
and half space subgrade layer (i.e. no bedrock), and the 
other system is composed of 4 layers, i.e. AC surface, sub-
base layer, subgrade layer and bedrock (Fig. 1).

By using these example systems, a reliability analysis 
is carried out in order to investigate the effects of modeling 
errors introduced by material uncertainties on the max de-
flections. Representative material properties are shown in 
Table 1.

Table 1. Modeling parameters for pavement systems

Parameters AC surface Subbase Subgrade

Unit weight, kg/m3 2350 2100 1900

Thickness, m 0.30 0.40 4.30

E, MPa 3500 
(150–21 000)

350 
(150–750)

100 
(35–210)

Poisson ratio 0.35 0.40 0.45

Damping ratio 0.05 0.02 0.05

Furthermore, the range of the E is shown in the pa-
renthesis, i.e., the ranges for the AC surface, subbase, and 
subgrade layers are in 150~21  000 MPa, 150~750 MPa, 
and 35~210 MPa, respectively. 4 types of structural in-
tegrity conditions are considered in order to investigate 
the evaluation capability of the NN as an inverse analysis 
tool. 4 conditions represent the healthy state for all layers 
(condition I), the poor surface layer case (condition II), 
the poor subbase layer case (condition III), and the poor 
subgrade layer case (condition IV) (Table 2).

Fig. 2 shows the max deflection curves for the differ-
ent pavement conditions shown in Table 2. The least value 
of the max deflection at w1 is about 0.2 mm for the case 
of condition I. The largest value of the max deflection is 
about 0.3 mm for the case of condition IV, which has a 
poor subgrade. However, the max deflection curves have 
similar trends, with the exception of w1 in the cases of con-
ditions II and III.

Table 2. E for integrity conditions

Condition
Elastic modulus (E), MPa

Description
AC surface (E1) Subbase (E2) Subgrade (E3)

I 10 000 500 150 Healthy condition
II 5000 450 120 Poor surface
III 8000 250 120 Poor subbase
IV 8000 450 50 Poor subgrade

Fig. 2. Comparison of max deflection curves for conditions: 
 I;  II; III;  IV 
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3.2. Reliability analysis
For the inverse analysis, (the estimation of E of each pave-
ment layer), the information on layer thickness, Poisson 
ratio, unit weight and damping ratio are required in order 
to model the behavior of the asphalt pavement system dur-
ing the FWD test. The values of material properties can be 
assigned using conventionally acceptable values. For ex-
ample, the Poisson ratio is usually considered in the range 
of 0.3–0.5 for the general pavement structures and the lay-
er thickness can be decided by design drawings or a GPR 
test (Ghasemi, Abrishamian 2007; Loizos, Plati 2007). 
However, it is very difficult to exactly decide the material 
properties and there are inevitable uncertainties because 
each layer was constructed by compaction and rolling in 
the field. Therefore, there is a certain level of modeling er-
ror during an inverse analysis. In the case of forward anal-
ysis, the effects of the uncertainties can be investigated by 
carrying out a reliability analysis. Therefore, the effect of 
modeling errors due to uncertainty is generally not par-
ticularly significant. Errors in analysis results such as max 
deflections are not significantly corrupted by the modeling 
error and the results usually fall into the acceptable range 
in the view of an engineer’s judgment. However, in the 
case of inverse analysis, the modeling error can lead to a 
significant estimation error and sometimes the inversion 
process can diverge. This is caused by modeling error since 

the modeling error is one of the ill-posedness in inverse 
analysis. Therefore it is very important to investigate the 
effect of the material uncertainties on the max deflection 
data, which is important information for inverse analy-
sis that uses the FWD test. It is also important to develop 
an alternative scheme to reduce this ill-posedness due to 
modeling error.

In this study, the reliability analysis is first carried out 
to investigate the effects of the material uncertainties on 
the max deflections by utilizing the Monte Carlo Simula-
tion for the above mentioned 4 type integrity conditions of 
2 example pavement systems. Due to the lack of probabil-
istic information on the pavement system, we consider the 
distribution of material properties as the normal distribu-
tion. The values in Table 1 are regarded as mean values 
for layer thickness, unit weight, Poisson ratio and damping 
ratio. The coefficients of variations (COV’s) for all param-
eters are assumed to be 5% in this study. For each integrity 
condition, 100 samples are generated for the Monte Carlo 
Simulation. The COV’s of the max deflections are shown in 
Figs 3, 4. It can be found that the effect of the uncertainty 
in the amplitude of impact loading is most significant for 
almost all cases on the 2 systems. It can also be seen that 
the uncertainty in the layer thickness has a greater affect 
in the measuring points near the impact source, while the 
uncertainties in the E mainly affect the points that are far 

Fig. 3. Cov’s of max deflection data according to material uncertainties for half space boundary case:  – elastic modulus; 
 – layer thickness;  – force amplitude;  – Poisson ratio;  – density;  – damping ratio
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from the impact source. The uncertainties in density, Pois-
son ratio and damping ratio are less significant. The damp-
ing ratio is not strongly related to the max deflection, since 
the damping ratio usually controls the decaying trend un-
der impact loading. 

3.3. Inverse analysis using Neural Networks (NNs)

The NN consists of 4 layers, i.e. an input layer, 2 hidden 
layers, and an output layer, while each layer consists of 7, 
15, 10 and 3 neurons, respectively. The max deflection val-
ues for the 7 measuring points and the E for 3 pavement 
layers are utilized as the information for input layer and 
output layer. Therefore, each training pattern consists of 7 
input values (max deflections) and the 3 target values (E). 
The min number of training patterns is determined as 
1000, which is recommended by Yun and Bahng (2000), 
Vapnik and Chervonenkis (1971) to be about 2 times the 
number of total synaptic weights. The total learning ep-
och is fixed as 3000 iterations, the 1st – 1000 epoch with 
a constant learning rate of 0.1, the 2nd – 1000 epoch with 
a learning rate of 0.01 and the final – 1000 epoch with a 
learning rate of 0.001. Tables 3, 4 show the estimation re-
sults of E of each system for the structural integrity con-
ditions I, II, III and IV, by using the numerical simulation 
data without modeling error. These results are obtained 

for the ideal cases (no modeling error exists), and it can 
be easily found that the estimation is very successfully 
carried out with very small estimation errors irrespective 
of the boundary condition (max 2.29% and 3.37% for AC 
surface layer, max 2.6% and 1.72% for subbase layer, and 
max 2.1% and 0.87% for the subgrade layer, respectively). 
It can be concluded that the NN can be a useful tool for 
inverse analysis of all pavement systems using the FWD 
test data when no modeling error exists.

Fig. 5 shows the comparison of the estimation re-
sults for the noise-injected testing patterns from the con-
ventional NNs, which are used for obtaining the results 
in Tables 3, 4 and from the NNs that are trained using the 
noise injected training patterns, which are newly pro-
posed to consider the material uncertainties (Eq (2)). It 
can be determined that the conventional networks can-
not predict the E of the 2 pavement systems as precisely 
as they did for the ideal test patterns. In the case of the 
AC surface layer, the estimation errors are up to within 
the range of 8–11% for the half space boundary case and 
7–10% for the bedrock boundary case obtained by us-
ing the conventional NN. Furthermore, the estimation 
error is reduced to within the range of 5–8% and 2–3% 
by adopting the proposed NN. In the cases of subbase 
and subgrade layers for the half space boundary case, 
the estimation errors are also reduced from 13–21% to 

Fig. 4. COV’s of max deflection data according to material uncertainties for bedrock boundary case  – elastic modulus; 
 – layer thickness;  – force amplitude;  – Poisson ratio;  – density;  – damping ratio
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Fig. 5. Comparisons between conventional and proposed NN of estimation error corresponding to integrity condition  – bedrock 
case: proposed NN;  – bedrock case: conventional NN;  – no bedrock: proposed NN;  – no bedrock: conventional NN

Table 3. Estimation results by NN without modeling error for half space boundary case

Conditions I II III IV

AC surface Eestimated, MPa 9995.8 4907.5 8125.5 7817.1

Etarget, MPa 10 000.00 5 000.00 8 000.00 8 000.00

Error, % 0.042 1.85 –1.569 2.2862

Subbase Eestimated, MPa 512.77 446.98 247.65 438.29

Etarget, MPa 500.00 450.00 250.00 450.00

Error, % –2.554 0.671 0.94 2.6022

Subgrade Eestimated, MPa 148.79 117.48 118.66 50.36

Etarget, MPa 150.00 120.00 120.00 50.00

Error, % 0.81 2.1 1.1167 –0.72



16	 J. H. Yi et al.  Evaluation of Structural Integrity of Asphalt Pavement System from Fwd Test Data Considering...

8–16%, and from 6–11% to 6–13% respectively. While in 
the cases of subbase and subgrade layers for the bedrock 
boundary case, the estimation errors are also similarly 
reduced from 15–23% to 7–14% and from 5–9% to 4–7% 
respectively. From the above results, it can be concluded 
that:

−− the estimation error can be increased significantly 
when modeling error exists;

−− the proposed generation scheme of noise-injected 
training patterns can effectively handle the mod-
eling error caused by material uncertainties, irre-
spective of the pavement system boundary.

Table 4. Estimation results by NN without modeling error for bedrock boundary case

Conditions I II III IV

AC surface Eestimated, MPa 10 031.23 5168.52 7993.79 8073.26

Etarget, MPa 10 000.00 5000.00 8000.00 8000.00

Error, % –0.31 –3.37 0.08 –0.92

Subbase Eestimated, MPa 508.61 443.47 254.30 456.15

Etarget, MPa 500.00 450.00 250.00 450.00

Error, % –1.72 1.45 –1.72 –1.37

Subgrade Eestimated, MPa 150.30 119.31 119.87 50.43

Etarget, MPa 150.00 120.00 120.00 50.00

Error, % –0.20 0.58 0.11 –0.87

Fig. 6. Max deflection curves with and without modeling errors for integrity conditions for the half space boundary case

Fig. 7. Max deflection curves with and without modeling errors for integrity conditions for bedrock boundary case
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We also compared the max deflection curves and the 
estimation results for the most severely corrupted cases by 
using a conventional network for all four damage condi-
tions.

Fig.  6 shows the max deflection curves with and 
without modeling errors for the half space boundary cor-
responding to damage states I, II, III and IV. It can be ob-
served that there are considerable discrepancies between 
2 curves for the same integrity condition. Fig.  7 shows 
almost the same result for the bedrock boundary system. 
Fig.  8 shows the inverse analysis results obtained by the 
conventional and proposed NN for these typical cases 
shown in Fig. 6. It can be seen that the E can be overesti-
mated up to 40% especially for the intermediate subbase 
layer, E2. However, the estimation errors can be reduced 
from 8–20% to below 3% for the AC surface layer and 
from 30–40% to below 8% for subbase layer.

Fig.  9 shows the inverse analysis results obtained 
by the conventional and proposed NN for the deflection 
curves of the bedrock boundary shown in Fig. 7. It can also 
be seen that the E can be overestimated even up to 80%. 
However, the estimation errors are reduced from 5–20% 
to below 5% for the AC surface layer and from 40–80% 
to 5–20% for the subbase layer by introducing the genera-
tion scheme of training patterns that account for the un-
certainties in material properties. However, there seems to 
be no definite differences between the conventional and 
proposed NN in the E of the subgrade layer.

4. Conclusions 

In this study, we proposed the alternative generation 
scheme of training patterns by extending the conventional 
noise injection learning algorithm to consider the material 
uncertainties for improving the robustness of the NN tech-
nique as an inverse analysis tool for the FWD test.

Firstly, was developed the wave analysis program 
based on the spectral element method for accurate and 
fast calculation in order to reduce the computing time to 
generate a large number of training patterns.

Secondly, was carried out the reliability analysis to 
investigate the effects of the modeling error that was in-
troduced by uncertainties on material and layer thickness 
on the max deflection data for the differently layered pave-
ment systems.

Finally, the effect of the modeling error was investi-
gated in terms of inverse analysis by using the ANN tech-
nique.

It was found that the modeling errors due to uncer-
tainties can significantly increase the inverse estimation er-
ror. And that the proposed noise injection training scheme 
could effectively handle the modeling error for both the 
bedrock boundary and the half space boundary cases.
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Fig. 8. Inverse analysis results for conditions with modeling errors of 5% for half space boundary case:  – conventional NN;
 – proposed NN

Fig. 9. Example of estimation results for conditions I, II, III, and IV with modeling errors of 5% for bedrock boundary case: 
 – conventional NN;  – proposed NN
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