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1. Introduction

Steel-concrete composite structures are common practice 
today in bridges and industrial buildings. The advantages 
of both materials lead to a very economic alternative es-
pecially in terms of high bearing capacity. The Structural 
Laboratory of INSA, Rennes, France has performed some 
experimental tests including one of a two-span beam that 
will be used to valid the finite element model PONTMIXTE 
(Guezouli, Yabuki 2006). Depending on the hogging 
cross-section class, the prEN 2003 – Eurocode 4: Design of 
Composite Steel and Concrete Structures – Rules for Bridg-
es – Part 2, Stage 34 Draft Revised, give the max moment 
redistribution coefficient allowed in the case of cracked or 
uncracked elastic global analyses, so the knowledge about 
the influence of some phenomena in the inelastic range on 
the proposed values can reduce significantly the costs. The 
focus is on the relative less resistant classes of cross-sec-
tions that require an Elastic Global Analysis (EGA). The 
local buckling begins generally before reaching the elas-
tic bending resistance for class 4 and between elastic and 

plastic resistances for class 3. Experimental and finite el-
ement (FE) studies on the local buckling of steel gird-
ers have been described in many papers (Davies, Mandal 
1979; Shanmugam, Wan Mohtar 2007; Škaloud, Rokey 
1972; Žilinskaitė, Žiliukas 2009) and the elastic as well as 
the inelastic behaviour of plate girders having uniform 
cross-section along the beam is well understood. With-
out taking into account a specific classification of these 
cross sections, Škaloud and Rokey (1972) concluded that 
the ultimate load carrying capacity is influenced by the 
flexural rigidity of the flanges for girders having simi-
lar proportions to those employed in civil engineering 
construction. Porter et al. (1975) assumed that the fail-
ure will occur when a certain region of the web yields 
as a result of the combined effect of the inclined tensile 
membrane stress field and the web buckling stress. So, it 
appears that the combined rigidity of compressed flange 
and the web, for a steel panel under negative bending 
moment, remains the first parameter influencing the 
load carrying capacity of the cross-section.
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2. The model PONTMIXTE

The main item of PONTMIXTE software includes a graph-
ical post-processor PMIXTPOST for plotting needed 
variable all along the beam or against the increasing load 
(Guezouli, Aribert 2001). The continuous beam could be 
pre-designed with constant cross-section along the beam 
(for buildings) or different flange thicknesses on hogging 
zone than those in sagging zone (for bridges) (Brozzetti 
2000). The algorithm select the most critical loading cases 
on hogging and sagging zones between the possible ones 
(example: for a two-span beam, 4 possible loading cases 
for asymmetrical beams reduced to 2 cases for symmet-
rical ones if both distributed and concentrated variable 
loads could be applied to the beam). In the case of class 3 
or 4 cross-sections on hogging zone, the unknown values 
of bottom flange thicknesses could be found by an iterative 
process balanced between two critical loading cases:

critical loading case in sagging zone: max moment  −
close to the plastic resistant moment;
critical loading case on hogging zone: max moment  −
close to the elastic resistant moment.

Different FE models of composite beams have been 
proposed (Chung, Sotelino 2006; Guezouli, Aribert 2001; 
Nguyen et al. 2008). Fig. 1 presents the finite element mo-
del (FEM) used in the program PONTMIXTE. This model 
considers a reinforced concrete slab connected to a steel 
girder. The composite beam FE (node i to node j) has 4 
degrees of freedom per node:

     
. (1)

For the node “i” for example (Fig. 2), the longitudinal 
displacements are: ui

(c) for the concrete slab and ui
(a) for 

the steel girder applied at each corresponding centroid, the 
vertical displacement vi and the rotation θi both applied at 
the neutral axis of the entire composite cross-section. The 
stud slip is defined by:

  , 
(2)

where d – the distance between the slab and the girder 
neutral axis.

The slab is connected to the steel beam by 2 springs 
at both ends.

First numerical integration is performed along the 
element (2 Gauss points) and the second one concerns 

each fibre constituting the entire composite cross-section 
(Fig. 2a). Non linear equations are solved using a step-by-
step method including a secant algorithm. The automatic 
longitudinal mesh of the beam could be in accordance 
with the connection distribution or not. Along the beam, 
5 Gauss points are necessary in the variable part of the 
beam (slope 25%) and 2 Gauss points are enough elsewhe-
re (Fig. 2b).

a b

Fig. 2.  Cross-section integration (a); variable inertia (b)

The calculation keep running until the imposed stop-
ping calculation (such as reaching the elastic moment at 
intermediate support, or application of the whole defined 
loads etc.). This generally occurs before anyone of the fol-
lowing material failure criteria is reached:

max compression in the concrete slab; −
max strain in the steel girder; −
max strain in the reinforcing steel; −
max slip of the stud. −

The convergence of the iterative process is tested on 
the norm of the displacements limited to 10–4.

The symmetrical stiffness matrix of the composite 
beam element (ij) including a stud at the node “j” for exam-
ple, is presented in Eq (3) with the following notation:

 – the ij value in the concrete stiffness matrix 
(6×6);

  
– the ij value in the girder stiffness matrix (6×6);

Rij – the ij value in the stud stiffness matrix (3×3).
The specific FE for local buckling instability (Fig. 3) 

includes longitudinal displacements for the concrete slab 
and the girder connected to a rotational spring. The Mo-
ment-Rotation curve (M–θ) describing the local buckling 
will be followed as soon as the point (Mv, θv) is reached. 
This point represents the beginning of the buckling and 
will be numerically established. The secant stiffness of the 
buckling FE can be easily added at appropriate degrees of 
freedom in Eq (3).

Fig. 1. Composite beam FE Fig. 3. Local buckling element with rotational spring
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3. Material behaviours

The curves describing the material behaviour of each com-
ponent are shown in Fig. 4 using following Eqs (4)–(5):

Concrete:   (4)

with:  and 
 

Stud:   (5)

The parameters c1 and c2 (Eq (5)) depend on the duc-
tility of the stud and can be easily obtained using a push-
out test; usual values are: c1 = 0.7 and c2 = 0.8. 

In order to take into account the creep effect (Fig. 4d),

the elastic modulus of the concrete is reduced to , 

where E(a) – the usual elastic modulus of structural steel; 
n – the modular ratio (for first steps loading: n = ∞, when 
the concrete slab is dry: n = 18 and leads to: n = 6). The 
temperature difference effect is considered by a superposi-
tion of a tension Nsh in the concrete slab and a compres-
sion in the neutral axis of the composite cross-section

(homogenised with n = 12) with:
 

 and

Msh = Nsh × xsh. If the temperature difference between slab 
and steel girder is about ±5 °C, the total shrinkage includ-
ing the temperature effect for usual concrete can vary from 

 (dry environment) to  (most 
favourable environment). The tension stiffening effect is 
computed in PONTMIXTE as it is defined in prEN 2003 – 
Eurocode 4.

4. Finite element model validation

The pre-design algorithm leads to a hogging cross-section 
of class 3 (Fig. 5).

        

.

 

(3)

a

b

c

d

Fig. 4. Steel girder behaviour (a); reinforcing steel behaviour (b); 
ductile stud behaviour (c); concrete behaviour with creep (d)
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Fig. 5. Geometrical characteristics of the twin-beam

In sagging zones, the cross-section is assumed to be 
of class 1 because the slab is fully connected to the gir-
der. An uncracked elastic global analysis is performed. The 
self weight is taken into account (4.17 kN/m for sagging 
zones and 4.26 kN/m for hogging ones). Only concentrat-
ed loads are applied on the beam, a load P applied at the 
left mid-span increases proportionally to a load Q applied 
at the right mid-span. For the first critical loading case (the 
one concerning the sagging zone), only P is applied and for 
the second critical loading case (the one concerning the 
hogging zone), both P and Q are applied proportionally. 
It is assumed that the hogging zone concerns 15% of the 
span length on each side of the intermediate support. For 
this zone, the pre-design algorithm proposes 15 mm for 
the bottom flange thickness while for other cross-sections 
in sagging zones only 10 mm are required. The top flange 
thickness is equal to the bottom one. After the beam pre-
design, a non linear calculation is carried out with the fol-
lowing loading history: the load P applied at the left mid-
span increases proportionally to the load Q applied at the 
right mid-span until 550 N. At this load level, Q remains 
constant and P still increases until one of the failure crite-
ria described above is reached. Mechanical characteristics 
are summarised in Table 1. Figs 6, 7 respectively, show that 
the comparison between numerical and experimental re-
sults is satisfactory both for deflection (unfortunately the 
measurements under the load Q have not been done), and 
for the bending moment under the load P at the interme-
diate support. Numerical and experimental failures are 
reached by concrete cracking under the load P for P + Q ≈ 
1400 kN giving:

– max displacement under P:

 48 mm;  45 mm,

– max moment at intermediate support:

 960 kNm;  963 kNm,

– max moment under P:

 1140 kNm;  1130 kNm. 

Table 1. Mechanical characteristics

Material Parameters values

Slab Ecm = 36 000 MPa, fck = 40 MPa, fcm = 48 MPa, 
ft = 2 MPa, εm = 0.0022, εr

(c) = 0.004

Girder E(a) = 190 000 MPa, fy(a) = 475 MPa, fu(a) = 
620 MPa, µ1

(a) = 10, µ2
(a) = 28

Bars E(s) = 200 000 MPa, fy(s) = 443 MPa, fu(s) = 
565  MPa, µ1

(s) = 1, µ2
(s) = 32, εu

(s) = µ2
(s) εe

(s)

Stud Qu = 80 000 N, c1 = 0.7, c2 = 0.8, γmax = 6 mm

Fig. 6. Comparison of deflections

Fig. 7. Comparison of bending moments

It is worth mentioning that the real conditions of the 
specimen test where considered in this numerical simula-
tion taking into account the tension stiffening, the concre-
te creep and shrinkage as well as the temperature differen-
ce effect. Without these options, the results could not be 
as close as those obtained (Guezouli, Aribert 2004). This 
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validation does not include the local buckling phenome-
non because the concrete cracking (max compression) oc-
curred before as the failure criterion. For this reason, the 
simulation of a continuous beam at real scale with hogging 
cross-sections of class 3 or 4 appears necessary to simulate 
the local buckling using the specific FE previously defined 
in Fig. 3.

5. Influence of local buckling on the moment 
redistribution for a continuous beam at real scale

Firstly, the pre-design of the 3-span beam leads to a hog-
ging cross-section of class 3 and a bottom flange as well 
as the web of class 3. Mechanical characteristics are given 
in Table 2. For reminder, the whole cross-section class is 
the max one between the compressed flange and the web. 
Table 3 shows different cross-sections provided for by this 
investigation taking care to be always in the case of a girder 
cross-section of class 3. The cross-section obtained by the 
pre-design is noted H5. It represents the less resistant one 
by comparison to the other ones (H1 to H4) for which the 
thicknesses were arbitrarily increased or decreased in or-
der to vary the classes of the bottom flange and the web 
from class 1 to 3. It should be noted that the flange thick-
nesses in sagging zones remain the same for all the beams, 
the web thickness is constant all along each beam, the self-
weight of the girder becomes different from one beam to 
another and the critical position of concentrated variable 
loads Q is the same for all the beam in the case of type A 
(symmetrical loading case) and supposed the same in the 
case of type B (asymmetrical loading case) (Fig. 8). It is 
pointed out that only the pre-designed beam remains op-
timized at ultimate and serviceability limit states (ULS and 
SLS). Geometrical characteristics of hogging cross-sec-
tions are given in Table 4 with also some arbitrary modifi-

Table 2. Mechanical characteristics

Material Parameters values

Slab Ecm = 35 000 MPa, fck = 40 MPa, fcm = 48 MPa,  
ft = 3.5 MPa, εm = 0.0025, εr

(c) = 0.0035

Girder E(a) = 210 000 MPa, fy(a) = 355 MPa, fu(a) = 
510 MPa, µ1

(a) = 10, µ2
(a) = 25

Bars E(s) = 200 000 MPa, fy(s) = 400 MPa, fu(s) = 
432 MPa, µ1

(s) = 1, µ2
(s) = 25

Stud Qu = 174 900 N, c1 = 0.7, c2 = 0.8, γmax = 6 mm

cations proposed for the web and the bottom flange giving 
always a girder cross-section of class 4 on hogging.

The traffic loads applied to the bridge (here a twin-steel 
girder bridge) have values in accordance with the Model 1 
(EN 1991-2:2002. Eurocode 1: Actions on Structures. Gene-
ral Actions. Actions on Structures Exposed to Fire) namely 
a “U.D.L.” of 9 kN/m2 for the lane 1 and 2.5 kN/m2 for the 
lanes 2 and 3, and a Tandem System with 2 axle loads each 
equal to 300 kN. In the transverse direction the traffic lo-
ads are distributed according to a linear influence line. Fi-
nally, the numerical characteristic values of traffic loads for 
the most loaded lane are: q = 31.2 kN/m and Q1 = Q2 = 
406 kN (with the distance 1200 mm).

5.1. A 3D finite element model for buckling analysis

The 3D model (Fig. 9) developed on the finite element code 
Castem represents the steel girder as well as the stiffen-
ers meshed by 4-nodes shells, the studs are meshed using 
3D beams to ensure the displacements continuity with the 
shells (same degrees of freedom) and the reinforcing bars 
are replaced by equivalent shells supposed at the top of the 

Table 3. Cross-sections under investigation on hogging zone – class 3

Cross-section Web thickness,  mm Web class Bottom flange thickness,  
mm Bottom flange class

H1 30 1 50 3
H2 25 2 50 3
H3 20 3 60 1
H4 20 3 55 2
H5 20 3 50 3

Table 4. Cross-sections under investigation on hogging zone – class 4

Cross-section Web thickness,  
mm Web class Bottom flange thickness,  

mm Bottom flange class

K1 30 1 35 4
K2 25 2 35 4
K3 20 3 35 4
K4 15 4 60 1
K5 15 4 55 2
K6 15 4 50 3
K7 15 4 35 4
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studs. The panel length is equal to twice the web height 
(hw) beginning from the cross-section H-H. For bound-
ary conditions (Fig. 9), A and B (top flange and bars), the 
lateral displacement Uyy is equal to zero all along the X 
axis. For the bottom flange (C), with same conditions, the 
curve (M-θ) concerns only local buckling otherwise it may 
include also the lateral tortional buckling. It is supposed 
that on hogging zone the concrete slab is totally cracked 
so it does not need to be meshed. Nevertheless, very stiff 
springs should be represented to keep same distance be-
tween the top flange of the girder and the reinforcing bars 
during the loading. It’s pointed out that the springs have 
no influence on the shear behavior of the studs (Faella et 
al. 2002; Guezouli et al. 2008). This simplification requires 
common mesh nodes between the studs and the reinforc-
ing bars.

The comparison of the transverse displacements of 
the web at ultimate limit state (Fig. 10) shows clearly that 

  H-H S-S

Fig. 8. Pre-design results and critical loading cases

the addition of very stiff spring elements to the model has 
a negligible influence on the mechanical behaviour and 
the studs appear working exclusively in shear. The model 
is loaded by applying a displacement at its end to avoid 
possible geometrical element distortion. The vertical dis-
placement Uz equal to 200 mm is applied in 10 steps. The 
curves (M-θ) are plotted for different cross-sections of 
class 3 (Fig. 11) and of class 4 (Fig. 12). The rotation capac-
ity of the cross-section is similar for all the cross-sections. 
The max point of each curve represents the beginning of 
the local buckling (Mv, θv). After this point, a hyperbolic 
decreasing model (Eq (6)) could be adopted with appro-
priate values for M0, Mv and θv (M0 represents a horizon-
tal asymptotic line). The web thickness has a stronger in-
fluence on these curves than the bottom flange one (on the 
initial stiffness and also on the max hogging moment). The 
decreasing curves after buckling is similar with nearly the 
same value of buckling rotation (θv ≈ 0.014 rad). The curve 
related to Eq (6) plotted for H1 as an example, gives a good 
prediction for the behaviour after buckling. The buckling 
rotation is also nearly the same in the case of cross-section 
of class 4 (θv ≈ 0.012 rad).

 
. (6)

Remarks:

Before setting about a non-linear stability calculation, a 
linear stability one is carried out and the whole displace-
ment field is reduced by a scale of 5% in the aim to repre-
sent an initial deformation of the specimen (initial defor-
mation data for non-linear calculation).Fig. 9. Simplified 3D model
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There is no significant sense to talk about available 
rotation capacity at the intermediate support for cross-sec-
tions of classes 3 and 4 because of the local buckling.

5.2. Results of the numerical analysis
The moment redistribution coefficient (%) is calculated 
with the Eq (7):

 

, (7)

where – the hogging moment obtained by a vir-
tual elastic calculation (using the same loading level λ); 

 – the numerical hogging moment obtained for 
H-H cross-section; – the hogging moment resulting 
only from the first and second loading steps corresponding 
respectively to the selfweight of the girder and the one of 
the concrete that is still wet (Guezouli, Aribert 2004; Gu-

a

b

Fig. 10. Without springs (a); with springs (b)

Fig. 11. 3D calculations and buckling curves – class 3

Fig. 12. 3D calculations and buckling curves – class 4

ezouli 2007; Guezouli, Yabuki 2008). During these steps, 
the cross-section is not considered resisting as a compos-
ite cross-section so, this part of bending moment must be 
subtracted to the ones defined previously. The proposed 
hyperbolic model has been implemented in the program 
PONTMIXTE and different simulations are carried out 
with appropriate values of the model parameters (M0, 
Mv and θv). The calculation termination criterion is ei-
ther reaching the plastic resistant moment in sagging zone 
(generally occurs for the critical loading case of type A) or 
the elastic moment resistant at the intermediate support 
(generally occurs for the critical loading case of type B).

5.2.1. Results for the beams of class 3
Different values of the variables involved in Eq (7) without 
and with taking into account possible local buckling are 
given in Tables 5 and 6, respectively. The variation of the 
hogging moment against the cumulative load (Figs 13, 14, 
15), show that for the beams H1 and H2, the elastic resist-
ant moment is reached before the buckling characteristic 
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point (Mv, θv): no influence of local buckling on the mo-
ment redistribution coefficient, the cross-sections seams to 
be relatively resistant. For the beams H3, H4 and H5, with-
out taking into account the local buckling, the rule of 10% 
redistribution predicted in ENV 1994-2:1997 Eurocode 4: 
Design of Composite Steel and Concrete Structures ‒ Part 2: 
Composite Bridges, seems to be un-adequate especially for 
loading case of type A but the occurrence of local buckling 
decreases the value of the numerical hogging moment in-
creasing consequently the value of the redistribution coef-
ficient R. This value becomes finally larger than 10% for 
both loading cases. Because of local buckling, the calcula-
tion stops for lower values of λ (λbuckling ≤ λno buckling) es-
pecially for loading case of type B and necessary the elastic 
moment  changes and, consequently the value of 
R. In the column of λ (Tables 5, 6), the letters correspond 
to the stopping calculation criterion for each beam [(A) → 

 and (B) → ]. It must be noted that the beams 
H1 and H4 have been arbitrary defined on hogging zone 

stronger than the one obtained by the pre-design optimi-
zation (H5). This leads necessary to values of λ ≥ 1.35. For 
example, in the loading case B of the beam H3, the nu-
merical bending moment can be plotted along the beam by 
comparison to the virtual elastic calculation. Without local 
buckling (Fig. 16a) the elastic hogging bending is obtained 
while the lower layer of the girder bottom flange reaches 
its elastic limit (this occurs for λ = 1.60, value adopted for 
plotting the curves). It is clear that for this critical load-
ing case, the left intermediate support is mostly concerned 
with the local buckling compared to the right one (see the 
dot-line corresponding to buckling moment). If the local 
buckling is taken into account (Fig. 16b), the same stop-
ping calculation criterion, as the one described before, is 
reached for a lower loading level (λ = 1.41). The first ele-
ment that begins to buckle is located on the left intermedi-
ate support causing redistribution of internal forces. Local 
buckling extends on both sides defining the zone subjected 
to this instability.

Table 5. Hogging and sagging bending, kNm – see Table 3 (class 3) ‒ all options – local buckling not included

Beams λ R, %

Loading case of type A (Fig. 9)
H1 −41 706 −43 653 −17 232 −48 958 37 058 37 563 1.71(B) 7
H2 −39 825 −41 166 −16 987 −47 072 33 374 33 541 1.51(A) 6
H3 −37 698 −39 046 −17 090 −51 843 29 228 29 462 1.35(A) 6
H4 −37 632 −38 712 −16 927 −48 487 29 285 29 462 1.35(A) 5
H5 −37 556 −38 340 −16 745 −45 150 29 350 29 462 1.35(A) 4

Loading case of type B (Fig. 9)
H1 −41 722 −47 264 −17 232 −48 958 32 472 37 563 1.54(B) 18
H2 −40 529 −45 027 −16 987 −47 072 29 742 33 541 1.40(B) 16
H3 −45 685 −49 123 −17 090 −51 843 28 872 29 462 1.60(B) 11
H4 −42 460 −45 793 −16 927 −48 487 27 625 29 462 1.42(B) 11
H5 −39 969 −43 146 −16 745 −45 150 26 948 29 462 1.35(B) 12

Table 6. Hogging and sagging bending, kNm – see Table 3 (class 3) – all options – local buckling included

Beams λ R, %

Loading case of type A (Fig. 9)

H1 −41 706 −43 653 −17 232 −48 958 37 058 37 563 1.71(A) 7
H2 −39 825 −41 166 −16 987 −47 072 33 374 33 541 1.51(A) 6
H3 −36 379 −39 046 −17 090 −51 843 29 229 29 462 1.35(A) 12
H4 −36 371 −38 712 −16 927 −48 487 29 285 29 462 1.35(A) 11
H5 −36 362 −38 340 −16 745 −45 150 29 350 29 462 1.35(A) 9

Loading case of type B (Fig. 9)

H1 −41 722 −47 264 −17 232 −48 958 32 472 37 563 1.54(B) 18
H2 −40 529 −45 027 −16 987 −47 072 29 742 33 541 1.40(B) 16
H3 −36 220 −46 051 −17 090 −51 843 28 074 29 462 1.41(B) 34
H4 −36 578 −44 832 −16 927 −48 487 27 335 29 462 1.36(B) 29
H5 −36 746 −43 146 −16 745 −45 150 26 995 29 462 1.35(B) 24
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Fig. 13. (θ – M) – bean H3 case A (a) and case B (b)

Fig. 14. (θ – M) – bean H4 case A (a) and case B (b)

Fig. 15. (θ – M) – bean H5 case A (a) and case B (b)

Fig. 16. H3 case B without buckling (a) and H3 case B with 
buckling (b)

a

b

a

b

a

b

a

b
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Table 7. Hogging and sagging bending – See Table 4 (class 4) – All options – Local buckling not included

Beams K1 K2 K3 K4 K5 K6 K7
Loading case of type A (Fig. 9)

λ 1.35(B) 1.22(B) 1.01(B) 1.22(A) 1.15(A) 1.15(A) 0.81(B)
R, % 24 19 16 2 1 − 0.0 12

Loading case of type B (Fig. 9)
λ 1.15(B) 1.01(B) 0.88(B) 1.46(B) 1.35(B) 1.15(B) 0.74(B)

R, % 30 28 25 7 8 9 21

Table 8. Hogging and sagging bending (kNm) – See Table 4 (class 4) – All options – Local buckling included

Beams K1 K2 K3 K4 K5 K6 K7
Loading case of type A (Fig. 9)

λ 1.35(B) 1.22(B) 1.01(B) 1.15(A) 1.15(A) 1.15(A) 0.81(B)
R, % 24 19 16 53 52 50 20

Loading case of type B (Fig. 9)
λ 1.15(B) 1.01(B) 0.88(B) 1.35(B) 1.22(B) 1.08(B) 0.74(B)

R, % 30 28 25 67 61 55 29

5.2.2. Results for the beams of class 4
In the case of class 4, Tables 7, 8 summarize only the val-
ues of the moment redistribution coefficient. Eq (7) has to 
be calculated with moments obtained using loads corre-
sponding to the specific value of λ. These values are gener-
ally less than 1.35 because most of the beams are less resist-
ant than the pre-designed one. The local buckling appears 
also more sensible for loading case of type B than the one 
of type A. Very low values of R especially for the loading 
case A, increases when the local buckling is taken into ac-
count. In some cases, R could be negative meaning that the 
redistribution is inverted and happens from mid-spans to 
intermediate supports. The influence of local buckling on 
the moment redistribution coefficient appears more im-
portant in the case of class 4 than in the case of class 3.

6. Conclusions

This study attempted to show that it is possible to simulate 
at a real scale the inelastic behaviour of a steel-concrete 
composite bridge beam with the proposed FE formulation. 
The comparison of numerical predictions against experi-
mental results for a two-spans beam in reduced scale (half-
scale) are good ensuring the ability of FEM to correctly 
describe the behavior of composite bridges. The main in-
terest concerned the beams with cross-sections of class 3 
and 4 in hogging zone that are generally subjected to local 
buckling. A preliminary study was carried with a 3D FEM 
to characterize the post-buckling behavior of these cross-
section classes. A hyperbolic model was proposed invol-
ving three parameters: the buckling point (Mv, θv) and the 
horizontal asymptotic line M = M0. This model was im-
plemented in the code PONTMIXTE and several nume-
rical simulations were carried out to show the significant 
influence of the local buckling instability on the moment 
redistribution coefficient from hogging to sagging zones 
in the case of a 3-span beam bridge at real scale. This in-

fluence appears closely linked to the class combination of 
the compressed flange and the web of the girder. The local 
buckling mostly occurs when the web is of a higher class 
(less resistant) than the compressed flange. In this case, 
if the local buckling is not taken into account, the rule of 
10% moment redistribution proposed by the prEN 2003 – 
Eurocode 4 becomes inadequate especially for symmetrical 
loading case. If local buckling is taken into account, the 
calculation of the moment redistribution coefficient after 
buckling is the one obtained considering specific construc-
tive measures (web-stiffeners) to avoid local buckling (Fig. 
14a). Without stiffeners, no redistribution is allowed for 
these cross-section classes.  kaloud and Zörnerova (2005) 
paid attention to the post-buckled behaviour and ultimate 
strength of slender webs; similar approach could be carried 
out for steel-concrete composite beams and implemented 
in the code PONTMIXTE. This future prospect could give 
important information about the influence of the “breath-
ing” web on the moment redistribution coefficient.
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