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Abstract. Development and wide use of route guidance systems lead to the need for suitable digital maps that can be 
used for some advanced applications. Sufficient accuracy of road geometry with emphasis on road centerline positions 
and curvature is crucial. In this paper is presented a method for finding road centerline curvature from raw GPS data. 
The approach consists of a few processing steps. First it is necessary to fit raw data of each road section using B-splines, 
and generate equidistant vertices of polyline of the fitted curve. Then follows the appliance of stereographic projection 
of chosen polyline segments onto the unit sphere. Using the least square method, the plane that best fits the points on 
the unit sphere is found and the circle that is the intersection of the plane and the unit sphere. Stereographic projec-
tion of this circle back to the equatorial plane gives the corresponding circular arc and curvature. The method is also 
applicable in higher dimensions. The 3D case is numerically presented and results show that the proposed procedure is 
efficient and yields accurate results. 
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1. Introduction 

Precise digital road geometry is a fundamental for devel-
opment of various applications regarding intelligent trans-
port systems, traffic safety and other traffic-related areas 
(Barai 2003).

The accuracy of available digital maps suffices for 
some useful applications, such as navigation and route 
guidance systems. However, there are other applications, 
where a combination of enhanced digital road maps and 
precise positioning systems is necessary. Some possible 
applications for which detailed road geometry is needed 
are Rollover Warning and Control system, Lane Depar-
ture Warning (LDW) and lane-level navigation. Another 
application areas that can benefit from detailed road geo-
metry data are analysis of road geometry on driving con-
ditions and visibility (Pellegrino 2009; Vorobjovas 2011) 
and consistency analysis of highway elements and their 
influence on operating speed and traffic safety (Cafiso 
et al. 2010; D’Attoma 2010; Dell’Acqua, Russo 2010; Dis-
cetti 2010; Perco 2008; Zuriaga et al. 2010; Šliupas 2009).

There are several approaches to obtain the data. 
One widely used approach is obtaining the required data 
with specially equipped cars. The other is the use of the 
2D aerial images, photointerpretation and appropriate 
vectorization. Due to the complexity of such images, the 
procedure is practically impossible to automate. Another 

option is statistical approach, where a large quantity of 
possibly noisy data from global positioning systems (GPS) 
for a fleet of vehicles is combined. The data are obtained 
from vehicles that commute on their usual business. This 
approach can be rather effective and less expensive. The 
same is true for the price of differential (DGPS) devices. 
This way one can construct maps that have higher accura-
cy, are easy to maintain, and are cheaper.

Accurate determination of the road centerline is ne-
cessary for deployment of advanced applications, such 
as LDW for lateral control. These accuracy requirements 
were integrated within the NextMAP project that deals 
with the economical and technical aspects of digitally de-
fined road maps. The quality of geometry includes adequ-
ate topology of the road network, accuracy of the centerli-
ne and last but not least, frequency of the map update. The 
combination of all these elements guarantees suitability 
for most demanding applications.

A specially equipped car, as for example Photobus 
(Gontran et al. 2005), combines accurate positioning 
through GPS/IMU measurements with a vertically orien-
ted CCD or CMOS camera. The system performs synch-
ronization of GPS data with imagery and allows precise 
determination of the road centerline. The geodetic coordi-
nates must be transformed to a local reference frame. This 
data allows the acquisition of the horizontal and vertical 
components of the road geometry. 
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The purpose of presented research is to develop and 
verify an efficient method for curve fitting, which can 
be used in modeling and analysis of the road centerli-
ne axis geometry. To model and efficiently analyze the 
road geometry, cubic splines were chosen as interpola-
ting functions. Cubic splines are piecewise interpolated 
curves by 3rd-degree polynomials between n adjustment 
points. Consequently, they take into account all trajectory 
behavior on each piece of interval and provide continuity 
conditions, velocity and acceleration on each adjustment 
point. Due to these characteristics, such curves are well-
suited for approximating road axes. The next task is to se-
gment given digital curve, representing the road axis, into 
arcs. It is well known that long straight stretches of road 
can increase the chance of accidents, as they dull the dri-
ver’s attention or stimulate him or her to speed up. On the 
other hand, most turns generate a decrease of speed and 
can sometimes surprise the driver, especially in case of bad 
weather conditions. The Advanced Driver Assistance Sys-
tems (ADAS) function, the Curve Speed Warning (CSW), 
or Rollover Warning, can inform users if they are traveling 
too fast to successfully pass an upcoming turn. Since ro-
adway design guidelines link the radius of turn curvature 
with the max speed for that turn, information on curvatu-
re radii together with other data can make CSW reliable 
and useful. 

2. Overview of published methods 

Curve-fitting is an important technique in the processing 
and analyzing digitaly given curves. Known procedures 
can be grouped into interpolation and approximation, de-
pending on whether the resulting curve passes through all 
of the data points or not. To fit a digitaly given curve it has 
to be divided the into segments. Such digital segment is fit-
ted with a appropriate analytic curve, which can be a line 
segment, a circular arc, or a high order curve.

The simplest approach, polygonal approximation 
(Perez, Vidal 1994; Pikaz, Averbuch 1996; Ray, Ray 1993, 
1994), fits each digital segment with a straight line se-
gment by finding the breakpoints and connecting them 
with straight line segments. 

Better representation can be obtained by using circular 
arcs for segment fitting (Pei, Horng 1995; Pei, Horng 1996). 
Many methods are based on a combination of line segments 
and circular arcs (Horng, Li 2001; Ichoku et al. 1996; Rosin, 
West 1989). A significant effort has also been devoted to fit-
ting arcs and bi-arcs through points in 2D (Yang, Du 1996). 
None of the above methods can be easily extended to 3D 
cases. Three-dimensional curves play a fundamental role in 
many 3D applications, one of them is also road centerline 
in engineering praxis. For this purpose, non-linear curves 
have been used (Farin 1997; Laurent et al. 1991).

Curvature is one of the most important pieces of 
information about shape contours, but in spite of its im-
portance, no definitive numerical method for curvature 
estimation has been found. While the curvature of conti-
nuous curves can be precisely evaluated by using closed-

form expressions, the problem of estimating curvature of 
spatially sampled digital curves is not straightforward. The 
main problem with such “digital curvature” estimation 
approaches is that digitaly given curves do not even have a 
curvature in a strict sense, for they are no more than a set 
of isolated points. Some pre-processing steps are needed 
before “curvature” can be estimated. The importance of 
knowing this element has motivated a series of researches 
(Coeurjolly et al. 2001; Estrozi et al. 1999; Fairney, Fairney 
1994; Imran et al. 2006; Lewiner et al. 2004; Mokhtarian, 
Mackworth 1992; Worring, Smeulders 1993).

The procedure for road centerline determination 
should also estimate the corresponding road curvature. 
Using a spline-fitting approach, the curvature can be cal-
culated through the 1st and 2nd derivative (Schroedl et al. 
2004). It is usually assumed that curvature is continuous 
across a road segment, which is why the degree of the po-
lynomial used for interpolation must be at least three. 

3. The proposed method

Here, a brief description of our approach is presented, 
which is different from procedures used usually. 

The raw GPS data, where points are not equidistant, 
are smoothed by splines, and new equidistant sample data 
are generated. These data are used in further computa-
tions. The next step is segmentation of digitally given cur-
ve into circular arcs. For this purpose some points (10 to 
20) were selected and search for the best fitting circular arc 
was performed. In each further step one additional point 
is added while observing the error, which is defined as the 
max distance of chosen points to the arc. When this error 
exceeds the prescribed error (e.g. 1 m), the construction 
of the arc is stopped and construction of a new arc starts.

The arc construction is performed in two steps. The 
abovementioned points are projected stereographically 
onto a sphere and find the plane whose intersection with 
the sphere best fits the data points. The intersection of 
the plane with the sphere is a circle, which is then stereo-
graphically projected back onto the XY plane. The result is 
the corresponding circular arc. 

All steps of the presented procedure are numerically 
very stable and there is no numerical problem when esti-
mating a radius of curvature of nearly linear segments of 
a digital curve. As a consequence, the proposed method is 
extremely robust. A detailed outline of the proposed pro-
cedure is given below.

The GPS coordinates of road centerline are not equi-
distant; distances between adjacent points vary from few 
to several 10 m. That is why the digital curve has to be 
smoothened. 

Let

 

 (1)
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and let T be the matrix whose rows are coordinates of 
points T1, T2, T3, T4. Then

 
 (2)

is a cubic polynomial mapping, represented with a matrix 
product of three matrices of dimensions 1×4, 4×4 and 4×2. 
While the parameter t takes all values from the interval 
[0, 1], the point B(t) lies on the arc, starting near point T2 
and ending near point T3. Then it is necessary to repeat 
the procedure with points T2, T3, T4, T5. Both polynomial 
arcs are smoothly (C2) joined near point T3 (Bartels et al. 
1987). The whole polygonal line can be approximated in 
that way, except the 1st and the last point. The method 
works on polygonal lines in arbitrary Euclidean space Rn. 
The example in R2 is illustrated in Fig. 1. 

Fig. 1. Splines 

For the purpose of the problem, a polygonal line 
whose vertices are equidistant has to be generated. Let S2 
be the unit sphere with center in the coordinate origin and 
north pole at N(0, 0, 1). The line through the North pole 
N and an arbitrary point (u, v, 0) on the equatorial plane 
intersects the sphere in (x, y, z), if for some real t the fol-
lowing is true: 

  (3)

Taking into account that the vector (x, y, z) has unit 
length, it follows: 

 
 (4)

and 

 
 (5)

Point (u, v, 0) in the equatorial plane maps into point 
T(x, y, z) on the sphere, whose coordinates are (Fig. 2)

 
 

(6)

The inverse relationship between point T(x, y, z) on 
the sphere and point (u, v, 0) on the equatorial plane is 

 
 (7)

The lines and circles in the equatorial plane map onto 
circles on the sphere. The circles passing through the north 
pole correspond to straight lines on the equatorial plane. 
To see that one can take an arbitrary circle or line lying on 
the equatorial (u, v) plane, it can be written as:

 
 (8)

and express it in coordinates on the sphere

 
 (9)

The above expression simplifies into the Eq of the pla-
ne

  (10)

intersecting the sphere in a circle (Fig. 3).
The stereographic projection maps the circle resul-

ting from the intersection of the unit sphere with the plane 

  (11)

Fig. 3. Stereographic projections of a line and a circle 

Fig. 2. Stereographic projection 
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which does not intersect the North pole, onto a circle lying 
in the equatorial plane with radius

 
 (12)

and center at 

 
 (13)

For the part L of the above generated polyline a cir-
cular arc or line approximation has to be find in the fol-
lowing way. First the stereographically project plane ver-
tices of L onto a sphere must be done. The least square 
method to fit these 3D space points with the plane Ψ, 
intersecting the unit sphere in the circle K1 is used. Its 
projection back to the equatorial plane gives the desired 
circular arc or line K2. 

For given points

  

there exists such a plane  that the sum of 
squares of distances of given points from the plane is min.

First the standard least square problem must be sol-
ved, so that a linear affine function   is 
found – which minimizes 

 
 (14)

Then an orthonormal basis with its last base vector 
orthogonal to the plane is found. The procedure is repeat-
ed in the new base. The convergence is extremely fast and 
only a few steps are needed.

The Mathematica Code of the above procedure is as 
follows in Fig. 4.

For testing purposes, an artificial digital curve 
has been constructed with two circular arcs of radius 
R = 300 m and R = 200 m and a connecting straight line 
segment (Fig. 5). The curve points are between 20 m and 
35 m apart. The coordinates of the testing curve have been 
randomly uniformly perturbed inside a square of 2 m by 
2 m around each point. This perturbation approx corres-
ponds to the errors in position obtained by a GPS device. 
The procedure described above yielded two circular arcs 
of R = 299 m and R = 200 m respectively and a circular arc 
with R = 64 205 m, which corresponds to the straight line 
segment connecting both arcs. Taking into account rather 
large random perturbations, the results show good robus-
tness of the proposed method.

The 2D construction of circular arc and line approx 
from field road data are presented in Figs 6 and 7.  
In Fig. 6, one can find an example of an urban road with 
elements consisting of parts with small radii and short 
straight line segments, while Fig. 7 explains the meaning 
of additional information:

Fig. 5. Circular arcs on a test curve 

Fig. 6. Circular arcs – urban roadFig. 4. Mathematica Code
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Fig. 7. Circular arcs – road: blue points – GPS data; red points – 
1 m equidistant points – splines; yellow points – end points 
of circular arcs; blue numbers – radii of arcs; black numbers – 
stationing points of segmentation

4. Conclusions

In this paper, the method for finding road centreline cur-
vature from raw GPS data is presented. The approach con-
sists of a few processing steps. First raw data of each road 
section using B-splines is fitted then the equidistant vertex 
of polyline of the fitted curve is generated. Using the least 
square method, the plane that best fits the points on the 
unit sphere, and find the circle that is the intersection of 
the plane and the unit sphere is found.

Stereographic projection of this circle back to the 
equatorial plane gives the corresponding circular arc and 
curvature.

The proposed method has been applied on a real 3D 
data model of the whole Slovenian state road network 
(more than 6000 km), and the performance is very satis-performance is very satis- is very satis-
factory. Furthemore, the approach is simple and straight-
forward. Last but not least, it also works in higher di-
mensions, which is not the case with any other known 
methods. Estimation of clothoide transition lines still has 
to be explored.
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