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Abstract. The article deals with two spans steel split-type one band pedestrian suspension bridge structure. Struc-
tural behaviour of such suspension member subjected to asymmetrical load has been discussed under the condition 
of temporary load influence imposed on one span out of two. Two structural solutions of one band suspension bridges 
have been considered: with completely flexible retaining elements, and in case of bending rigid. The article provides 
analytical expressions for calculations of the displacements of these asymmetrically loaded suspended elements, thrust 
forces and bending moments. Simplified analytical method accuracy of one band bridges is illustrated on the basis of 
performed numerical experiment Performed numerical experiment shows the resulting basis of simplified analytical 
method accuracy of one band bridges.
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1. Introduction

Suspension bridges, due to their technical performance 
and excellent architectural appearance are widely used 
both for large and small spans to overlap (Gimsing 1997; 
Ryall et al. 2000; Troyano 2003). One of the oldest and suc-
cessfully used to this day pedestrian suspension bridges is 
a steel stress-ribbon bridge (Schlaich et al. 2005; Schlaich, 
Bergerman 1992; Troyano 2003). The main carrying ele-
ments of such modern steel bridges are steel bands or high-
strength steel wire ropes (Juozapaitis et al. 2006; Michailov 
2002; Strasky 2005). Construction depth of the above type 
buildings is the lowest one. According to the operational 
requirements sag values of such bridge suspension carry-
ing elements are relatively mean (Schlaich et al. 2005). It 
induces high tensile forces formed inside load-carrying 
structures, requiring great steel rates and conditions the 
anchored foundation mass of such bridges (Katchurin 
1969; Kulbach 2007). One of the most serious drawbacks 
of the suspension bridges is their excessive deformations 
caused by the impact of asymmetric loads (Juozapaitis, 
Norkus 2004; Katchurin 1969; Kulbach 1999; Moskalev 
1981; Wollmann 2001). There are methods known to be 
applied in order to reduce the deformability of such sus-

pension structures. Commonly heavy reinforced concrete 
decks or prestressed concrete structures are used for such 
steel stress-ribbon (Caetano, Cunha 2004; Schlaich et al. 
2005; Strasky 2005). 

Recently the multi-span steel stress-ribbon pedestrian 
bridges are applied (Schlaich, Bergerman 1992; Troyano 
2003). Various design solutions are known for structural 
suspension systems (Strasky 2005). Due to horizontal dis-
placements of standing (medium) pier and wider range of 
situations to be applied for temporary load calculations, 
the behaviour of such structures becomes more complex. 
Without any doubts this fact complicates calculation of the 
structures facing geometrical non-linearities (Katchurin 
1969; Tarvydaitė, Juozapaitis 2010).

It shall be noted that absolute flexibility of a suspensi-
on cable is a theoretical concept, since the above elements 
of real structures have a particular depth cross section and 
bending stiffness of a finite size (not equal to zero) (Fürst 
et al. 2001; Gimsing 1997; Katchurin 1969; Moskalev 1981; 
Wyatt 2004). 

It is known that in order to reduce the displacements 
of suspension bridges induced by asymmetric and local 
loads the so-called “rigid” suspension elements shall be ap-
plied (Grigorjeva et al. 2010; Juozapaitis et al. 2006, 2010). 
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These retaining elements, combining tension and bending 
elements abilities, not just stabilize the initial form of the 
bridge effectively, but allow “to prevent” the application 
of expensive pretension or bulk reinforced concrete deck 
(Juozapaitis et al. 2008). These “rigid” structural elements 
are made of hot-rolled or welded steel cross sections. Due 
to the potential stress concentration it is recommended to 
rest such suspension bridge structures upon flexible, i.e. to 
design elements as split (Juozapaitis et al. 2006; Kala 2008; 
Prato, Ceballos 2003).

It shall be noted that behaviour of multi-span steel 
stress-ribbon bridges is not completely considered, parti-
cularly in view of supporting element bending stiffness. 

The article describes pedestrian two-span suspen-
sion split-type steel stress-ribbon bridges with a bending 
stiffness, analyzes the behaviour of such structures un-
der the asymmetric load. It deals with kinematic displa-
cements of bearing suspension cable of such bridges, and 
provides them in the form of displacement calculation 
analytic expressions. The efficiency of steel stress-ribbon 
bridge displacement stabilization through the bending 
stiffness is being discussed. Methods of an engineering 
design of tension and displacement of the asymmetrically 
loaded suspension bridge steel structures, evaluating the 
impact of bending stiffness. Numerical experiments show 
the basis of the accuracy of the developed simplified ana-
lytical method.

2. Simplified engineering method for kinematic 
displacements of pedestrian two-span suspension  
split-type steel stress-ribbon bridge is

The main bearing element of a pedestrian two-span sus-
pension split-type steel stress-ribbon bridge is a flexible 
cable which is calculated as a structure facing geometri-
cal non-linearity. Supporting steel structure of suspension 
two-span bridge is being estimated. Suspension elements 
of this structure are flexibly and rigidly supported in the 
area of end piers. Standing pier of the structure is horizon-
tally shiftable (Fig. 1). 

When calculating the one band suspension bridge, 
it is assumed, that bearing suspension cable is absolutely 
flexible cable, i.e. it is free of bending stiffness EI. Under 
the own weight flexible cable takes shape close to the squ-
are parable. Cable stressed by concentrated or asymmetric 
loads will change its initial form. Such deformation is de-

termined by the kinematic origin shifts. It shall be noted 
that the increase rate of cable curvature induced by kine-
matic displacements exceeds the increase conditioned by 
the elastic deformation. This means that kinematic dis-
placements can be more dangerous for cable deformabili-
ty than vertical displacements caused by elastic deforma-
tions. Simplified engineering method (estimated) has been 
developed for the analysis of kinematic displacements of 
suspension split-type steel stress-ribbon bridge (Tarvydai-
tė, Juozapaitis 2010).

It is assumed, that axial stiffness of the cable is equ-
al to  and the kinematic displacements caused by 
asymmetric load will be considered accordingly to the as-
sumption. According to the ratio of the right and left sus-
pension elements length , the horizontal kinematic 
displacement of the standing pier can be calculated as fol-
lows (Tarvydaitė, Juozapaitis 2010):  

	
 
,	 (1)

where L – span length of suspension cable, m; f0 − sus-
pension cable initial sag, m;  − vertical kinematic dis-
placement in the middle of the left span, m;  − vertical 
kinematic displacement in the middle of the right span, m. 

Then the thrust force equilibrium condition (Hl = Hr) 
is applied for calculation of left span vertical kinematic 
displacement:

	 	 (2)

where g – constant load, kN/m; p – temporary load, kN/m. 
With the help of geometric equations vertical kine-

matic displacement of the right span can be determined:

	 .	 (3)

It shall be noted that the left kinematic displacement 
is downward, and the right – upward (Fig. 1).

3. Simplified engineering method for general 
displacements of pedestrian two-span suspension  
split-type steel stress-ribbon bridge is

It is known that general (total) displacements of the ca-
ble include of Kinematic and Elastic displacements. Elas-
tic displacements are caused by cable elongation under 
the thrust (tension) force H. While calculating the above 
displacements it is considered that bearing cables of steel 
stress-ribbon bridge under the asymmetric loads experi-
ence, in particular, kinematic, and only then elastic dis-
placements. In order to determine general (kinematic and 
elastic) displacements the well known equilibrium Eq of a 
deformed state shall be applied:

	 	 (4)Fig. 1. Analytical model of the two-span split-type structure
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where: 

	 	 (5)

	 	 (6)

where s1 and  − accordingly the cable length after the 
elastic deformation and before it, m; H − thrust force, kN; 
E – elastic modulus, MN/m2; A – cross-sectional area, m2. 

Length of the cable prior the elastic deformation 

	 	 (7)

and after the elastic deformation s1:

	 	 (8)

where  − the horizontal displacement of a standing pier.
With the help of (4) – (8) expressions the equation for 

general cable displacement in the middle of the span will 
be as follows:

	 .	 (9)

Thrust forces of the right  and left  spans are as 
follows:

	 	 (10)

	 	 (11)

where  and  − accordingly general displacements of 
the left and right spans.

Solving the (9), (10) and (11) Eqs, the 3rd degree 
expressions will be delivered for the calculation of the left 
and right displacement values:

	

	
(12)

	

	
(13)

Horizontal displacement of the standing pier induced 
by the kinematic and elastic displacements can be calcula-
ted applying (14) and (15) Eqs:

	 	 (14)

	 .	 (15)

Then:

	
	 (16)

To solve the Eq of the 3rd degree with the help of mo-
dern mathematical methods, or mathematical program-
ming operators (Mathcad, Maple, Matlab, etc.) is not diffi-
cult. However, the design of suspension bridges shall take 
into the consideration the operational requirements (for 
example, the threshold bridge displacements), and to de-
termine parameters of the cable cross sections. In this case, 
the 3rd degree Eq is not helpful and the calculation will 
become quite complicated.

In order to obtain simplified engineering (estimated) 
expressions of suspension bridge displacements applying 
Eq (9) and taking into account Eq (10), the simplified for-
mula to be applied for the calculation of the general displa-
cement of the left cable will be as follows:

	
.
	

(17)

This formula allows, at a known horizontal displace-
ment of a standing pier to reduce the volume of the itera-
tive calculation. 

From the thrust force equilibrium condition ( ), 
the right cable displacement can be calculated: 

	 	 (18)

It shall be noted, that in this case the horizontal dis-
placement of the standing pier is calculated according to 
the Eq (16). 

4. Numerical analysis of a general displacement of  
two-span suspension structure

In order to determine the accuracy of the developed en-
gineering techniques the numerical experiment has been 
performed. For the numerical analysis the two-span split-
type structure flexibly and rigidly supported in the area of 
end piers with spans equal to 40 m, and the total length of 
the suspension bridge structure equal to 80 m, has been se-
lected. The initial sag values of the cable are accordingly −

  and  The analy-

tical model of the retaining element is presented in Fig. 2.
Calculating with the program Cosmos/m, the each 

span retaining element was composed of 80 straight finite 
elements. Uniformly distributed loads have been replaced 
in points (nodes) by concentrated forces. 
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During the numerical analysis of the corresponding 
bridge structure all values of evenly distributed asymme-
tric load are set in the context of temporary and perma-
nent changes in the load ratio range. Table 1 provides the 
results of the corresponding structure.

Analysis of the results presented in Table 1, shows 
that general vertical cable displacements (at the middle of 
the left and right spans) and the horizontal displacement 
of the standing pier ( ), calculated according to the 3rd 
degree and engineering formulas delivered by Cosmos/m 
program are almost coinciding. It shall be noted that dis-

placement of the left cable at span quarters (i.e. if  

and ) and general displacements are as well the 

same, and the greatest difference is less than 0.33%.

Fig. 2. Analytical model of the two-span split-type structure

Determined that general displacements values of the 
particular structure calculated using the simplified engi-
neering Eqs (12), (16) and (18), practically coincide with 
displacement values obtained with the help of Cosmos/m 
program, inaccuracies do not exceed 2.41%. 

5. Engineering method for displacements of structure 
with bending stiffness 

Bending stiffness structure is the structure which takes 
over loads both by stretching and bending. These retain-
ing elements, combining tension and bending elements 
abilities, stabilize the initial geometric form (Juozapaitis 
et al. 2006). 

Bending stiffness of the structure parameter is esti-
mated by the pliantness kL. The greater pliantness para-
meter kL is, the greater flexibility of the structure, and vice 
versa, the less pliantness parameter value kL, the more ri-
gid the structure is. It can be assumed that if the , the 
structure is very rigid, and when  the  – the structu-
re can be considered absolutely flexible.

Pliantness coefficient k is calculated as follows:

	 	 (19)

For the analysis of general displacements of the two-
span suspension split-type steel stress-ribbon bridge the 
engineering formula (estimated) has been developed. The 
analytical model is presented in Fig. 1.

Table 1. General displacement values delivered by Cosmos/M (C) program and after the engineering calculation (A) 

f0 γ % % %
C A C A C A

0.8

0.5 –0.5035 –0.5017 0.36 –0.03128 –0.03116 0.39 –0.07148 –0.0705 1.39
1 –0.6100 –0.6077 0.38 –0.04947 –0.04928 0.39 0.0924 0.0927 –0.32
2 –0.7130 –0.7102 0.39 –0.06758 –0.06732 0.39 0.2931 0.2932 –0.03
3 –0.7604 –0.7576 0.37 –0.07585 –0.07557 0.37 0.4077 0.4076 0.02
4 –0.7869 –0.7840 0.37 –0.08035 –0.08006 0.36 0.4807 0.4807 0.00
5 –0.8036 –0.8007 0.36 –0.08311 –0.08281 0.36 0.5310 0.5310 0.00

1.0

0.5 –0.4539 –0.4515 0.53 –0.03887 –0.03871 0.41 0.02791 0.0286 –2.41
1 –0.5703 –0.5674 0.51 –0.06130 –0.06106 0.39 0.2113 0.2115 –0.09
2 –0.6805 –0.6773 0.47 –0.08334 –0.08303 0.37 0.4363 0.4362 0.02
3 –0.7300 –0.7266 0.47 –0.09320 –0.09286 0.37 0.5645 0.5643 0.04
4 –0.7570 –0.7535 0.46 –0.09847 –0.09811 0.37 0.6460 0.6458 0.03
5 –0.7738 –0.7702 0.47 –0.10170 –0.10128 0.41 0.7021 0.7019 0.03

1.25

0.5 –0.4219 –0.4192 0.64 –0.05130 –0.05109 0.41 0.1311 0.1315 –0.30
1 –0.5530 –0.5498 0.58 –0.08071 –0.08042 0.36 0.3430 0.3428 0.06
2 –0.6746 –0.6711 0.52 –0.1092 –0.10887 0.30 0.6032 0.6026 0.10
3 –0.7275 –0.7240 0.48 –0.1217 –0.12134 0.30 0.7511 0.7505 0.08
4 –0.7557 –0.7521 0.48 –0.1282 –0.12791 0.23 0.8450 0.8444 0.07
5 –0.7728 –0.7692 0.47 –0.1321 –0.13179 0.24 0.9095 0.9090 0.06
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Thrust forces, acting on the left and right spans, are 
equal to:

	 	 (20)

	 	 (21)

where I – cross-sectional moment of inertia, m4.
Similar to the flexible cable, when substituting expres-

sion (9) with (20) and (21) Eqs, the 3rd degree (cubic) equ-
ation needed for the calculation of the left and right cable 
displacements will be obtained: 

 

	

(22)

	

	

(23) 

Horizontal displacement of the standing pier, accor-
ding to (14) and (15) Eqs will be equal to:

	 	
(24)

In order to simplify the calculation it is proposed to 
calculate the general displacement of the right cable (in the 
middle of the second span) through a thrust force equality 
condition ( ), as follows: 

 

	

(25)

 

	

(26)

Eqs (22)–(26) show that displacement of suspen-
sion bridge cables depends not only on their cross-axial 
stiffness, but also on the bending stiffness.

According to the engineering calculation method 
(using the beam analogy) the bending moments of the left 
and right cables in the middle of the span are:

	 	 (27)

	 	 (28)

Inaccuracy of (27) and (28) expressions is high and 
does not exceed 8.86% (Fig. 3).

6. Numerical analysis of the suspension structure 
bending stiffness general displacements

For the numerical analysis the same type of the suspen-
sion bridge, as a two-span flexible cable structure has been 
selected. Pliantness values of the selected parameter vary 
from 2 to 10. The analytical model of the retaining element 
is presented in Fig. 2.

During the numerical analysis of the current structu-
re the evenly distributed asymmetric load values are adop-
ted in the context of temporary and permanent changes in 
the load ratio range γ. 

The results of calculation are given in Table 2.
Figs 4-6 show stabilisation of dispacements with the 

help of bending stiffness depending on the initial sag (f0), 
when the temporary and permanent in the load ratio of 1.

Fig. 4. Stabilization of general displacements, at the middle of 
the first span, by the bending stiffness

Fig. 3. Bending moments at the middle of the first span, 
differences of results calculated according to the engineering 
formulas and delivered by the program Cosmos/m
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The results in Table 2 show that general displa-
cements of the left and right cables and the horizontal 
displacements of the standing pier ( ) calculated in 
accordance with the engineering calculation formulas 
and delivered by the program Cosmos/m practically coin-
cide. The greatest inaccuracy of the general vertical dis-
placement of the right unloaded by the asymmetric load 
mid-span in case of the directed downward elastic displa-
cement is practically equal to the directed upwards kine-
matic displacement. 

It shall be noted that general displacements at the qu-
arter of the left loaded with asymmetric load span (when

 and ) as well are practically the same.

The greatest difference between the results obtained by 
program Cosmos/M and after the engineering calculation 
is equal to 1.93%.

7. Conclusions

Presented simplified engineering method of suspension two-
span pedestrian steel bridge under action of asymmetrical 
loads allows performing the relatively simple calculation of 
bearing suspension cable thrust forces, vertical and horizon-
tal displacements and bending moments. Numerical analysis 
shows that proposed simplified engineering method of steel 
stress-ribbon bridge is sufficiently precise. The greatest inac-
curacy of vertical displacement and thrust forces calculation 
does not exceed 1.37%, and the determination of bending 

Table 2. Cosmos/M  program (C) and the displacement values received after engineering calculation (A)

kL % % %
C A C A C A

0.8

9.76 –0.5985 –0.5858 2.17 –0.04442 –0.04418 0.54 0.03232 0.0322 0.37
8.03 –0.5899 –0.5759 2.43 –0.04297 –0.04282 0.35 0.02291 0.0233 –1.67
6.67 –0.5779 –0.5629 2.66 –0.04113 –0.04107 0.15 0.01123 0.0124 –9.44
5.59 –0.5623 –0.5469 2.82 –0.03892 –0.03896 –0.10 –0.00229 –0.00272 –15.70
4.71 –0.5425 –0.5271 2.92 –0.03630 –0.03643 –0.36 –0.01753 –0.0147 19.25
3.37 –0.4901 –0.4762 2.92 –0.03003 –0.03033 –0.99 –0.04982 –0.0455 9.49
2.97 –0.4658 –0.4528 2.87 –0.02739 –0.02773 –1.23 –0.06148 –0.0567 8.43
2.70 –0.4465 –0.4344 2.79 –0.02539 –0.02577 –1.47 –0.06937 –0.0645 7.55

1.0

9.28 –0.5511 –0.5382 2.40 –0.05417 –0.05386 0.58 0.1396 0.1373 1.68
7.64 –0.5413 –0.5273 2.66 –0.05219 –0.05199 0.38 0.1260 0.1242 1.45
6.35 –0.5280 –0.5133 2.86 –0.04971 –0.04963 0.16 0.1091 0.1081 0.93
5.33 –0.5111 –0.4963 2.98 –0.04676 –0.04682 –0.13 0.08952 0.0894 0.13
4.50 –0.4902 –0.4757 3.05 –0.04333 –0.0435 –0.39 0.06748 0.0684 –1.35
3.25 –0.4376 –0.4248 3.01 –0.03537 –0.03575 –1.06 0.0205 0.0234 –12.39
2.87 –0.4143 –0.4024 2.96 –0.03211 –0.03254 –1.32 0.003103 0.00359 –13.57
2.62 –0.3961 –0.3849 2.91 –0.02969 –0.03015 –1.53 –0.00889 –0.00809 9.94

1.25

8.68 –0.5223 –0.5086 2.69 –0.06986 –0.06943 0.62 0.2539 0.2485 2.17
7.16 –0.5101 –0.4957 2.90 –0.06692 –0.06666 0.39 0.2345 0.2297 2.09
5.96 –0.4939 –0.4792 3.07 –0.06327 –0.06319 0.13 0.2107 0.2068 1.89
5.01 –0.4741 –0.4595 3.18 –0.05903 –0.05911 –0.14 0.1834 0.1807 1.49
4.24 –0.4503 –0.4364 3.19 –0.05417 –0.05442 –0.46 0.1531 0.1518 0.86
3.08 –0.3938 –0.3819 3.12 –0.04336 –0.04385 –1.12 0.08965 0.0910 –1.48
2.73 –0.3699 –0.3590 3.04 –0.03908 –0.03964 –1.41 0.06633 0.0685 –3.17
2.50 –0.3519 –0.3417 2.99 –0.03596 –0.03655 –1.61 0.05003 0.0527 –5.07

Fig. 6. Stabilization of general displacements, at the middle of 
the second span, by the bending stiffness

Fig. 5. Stabilization of standing pier horizontal displacements, 
by the bending stiffness
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moments – 8.86%. It shall be noted that this method is suit-
able for preliminary design of such bridges.
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