
ISSN 1822-427X print  /  ISSN 1822-4288 online

http://www.bjrbe.vgtu.lt

doi: 10.3846/bjrbe.2012.12

THE BALTIC JOURNAL  
OF ROAD AND BRIDGE ENGINEERING

2012 
7(2): 84–91

ANALYSIS OF INTERACTION BETWEEN THE ELEMENTS  
IN CABLE-STAYED BRIDGE

Verners Straupe1, Ainars Paeglitis2*

Institute of Transport Infrastructure Engineering, Riga Technical University,
Kalku street 1, LV-1658 Riga, Latvia

E-mails: 1verners@celuprojekts.lv; 2ainars.paeglitis@rtu.lv 

Abstract. Large-span cable-stayed bridges design is impossible without a cable adjustment, which should be made in 
various stages of construction and for finished structure alike. There may be many concepts of regulation – the creation 
of design geometry (mainly used for relatively small- span pedestrian bridges), the optimization of shear or moment 
diagrams in carriageway’s construction, the reduction of max tensile or compressive stresses in the load-bearing ele-
ments. Normally, the choice of mechanical and geometrical parameters for the main load bearing elements (cables, 
stiffness girder and pylons) which affect the flexibility of a bridge structure is an iterative process based on the struc-
tural engineering experience. The assumptions are to be tested by the Finite Element Method calculations and changed 
if necessary. This paper offers insight into the mathematical methods developed, based on the deformed shape of the 
cable-stayed bridge system. The method developed is demonstrated by example, where the system is optimized ac-
cording to the type of cable-stayed bridge (“star” or “harp” design), geometrical parameters (lengths of stiffness beam 
sections, height of pylons) and the stiffness parameters (cross-section of cables, flexibility of the girder). This method 
allows analyzing the interactions between this data.
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1. Introduction

A rapid development of cable systems for bridges is occur-
ring in the recent decades (Ruiz-Teran 2010). The number 
of cable-stayed bridges is increasing, their constructive so-
lutions are diversifying and the design methods of cable-
stayed bridges are improving (Malík 2004). Introduction 
of new materials renders possibility to more easily reach 
even longer spans (Kao et al. 2006; Serdjuks et al. 2008). 
At the same time, the cable-stayed bridges are becoming 
cheaper due to the reduction in material consumption and 
costs. The optimization of bridge structural design calls 
for improving methods of calculation, without having to 
sacrifice their safety (Janjic et al. 2003; Juozapaitis, Norkus 
2007). Regulation of cables is a way of reducing stresses 
in the load-bearing components, hence simplifying the 
constructive solutions and cost reduction (Cruz, Almeida 
1999). 

Authors of this paper are working on the analytically 
obtained interaction between the cables and stiffening gir-
der of cable-stayed bridge (Straupe, Paeglitis 2011). These 
formulas show how mechanical and geometric characte-
ristics impact the deformations and stresses in the system. 
This will allow making an accurate initial assumption of 

these components for further examination, using the Fini-
te Element Method (FEM).

2. Description of the method

2.1. Deflection due to the uniformly distributed load
Strains in stiffening girder of a cable-stayed bridge depend 
on deformations of each cable from the assigned load. 
Non-linear problem of finding forces in cables and an-
swering the question how they affect the stiffening girder 
can be calculated by researching deformed shape of the 
system. First, it is to be found how a simple beam with 
elastic supports deforms under the uniformly distributed 
dead load (Fig. 1).

Fig. 1. Scheme for a cable-stayed bridge
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Deflection of a simple beam can be found with a differ-
ential equation of deformed shape of axle: , 
where y(x) – equation of the axle deformations; M(x) – 
bending moment of the beam (Chen 1999).

Equation of the deformed shape of stiffening girder 
can be expressed:

	
.	  (1)

2.2. Deflection due to the symmetrically applied  
unit forces
Impact on the stiffening girder from symmetrical pair of 
cables can be modeled by applying the vertical unit forces 
in anchorage points of cables. Corresponding deflections 
can be found. The calculation scheme has three sections 
with different equations of bending moment (Fig. 2). Fur-
thermore, these sections have different equations of the 
axle deflections. Using differential equations, three sec-
tions can be described as shown below.

Section 1: . 	  (2)

Section 2: . 	  (3)

Section 3: . 	  (4)

2.3. Stresses in symmetrical cable pairs
The bending moment diagram of the stiffening girder de-
pends on the vertical forces applied to the cable anchor-
age points. The magnitude of these forces depends on the 
extent to which the cable deforms (elongates) from the 
given load. The cable extension depends on their proper-
ties: length, cross-sectional area and the Young’s modulus 
of the material (Walther et al. 1999).

Taking into account the deformed shape of the sys-
tem, the tensile force in a symmetrical pair of vertical ca-
bles (e.g. hangers of suspension bridge or an arc bridge) 
from the distributed load q can be expressed:

	

,	  (5)

where Lv – lengths of the cable, m; Ev – the Young’s modu-
lus, kN/m2; F – the cross-sectional area, m2; f – elongation 
of the cable, m.

This expression will be further used in the calcu-
lations of the vertical component of tensile force for an in-
clined cable.

2.4. Decrease in the max bending moment
One of the criteria for fixing the cable prestressing force is 
aimed at the reduction of max positive and negative bend-
ing moments (the presented method with some modifi-
cations is valid also for other purposes: controlling the 
permissible tensile and compressive stresses, etc.) (Kachu-
rin, Bragin 1971). In a theoretical case with an extra stiff 
cable (EvF → ∞), the stiffening girder could be observed as 
a multi-span beam. However, if the elastic supports being 
able to move vertically, the system tends to the values of 
a simple beam (if the EvF → 0). Depending on the possi-
ble vertical movements of supports, the negative moment 
will reduce, while the positive moment tends to increase 
(Fig. 3).

The Eq (5) shows dependence of the tensile strength 
of vertical cable on EvF of the cable. The law of indepen-
dence of force effects can be applied for finding the ver-
tical force in the anchorage points of cables, at which the 
moment values level off. Hence this result obtained will 
serve as an equivalent value EvFe for finding the extension 
of the cables which gives the required values of the ben-
ding moment. The cable force will be used to determine 

Fig. 2.  The bending moment diagram of simple beam due to 
the symmetrical pair of vertical unit forces

Fig. 3. Bending moment dependence on the stiffness of supports

∞
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the shortening (prestressing) value of the cable with real 
stiffness EvF.

In the layout with a symmetrical pair of vertical forces 
(Fig. 2), the middle section includes support with area of max 
negative moment and center of the span with max positive 
moment. From the condition Mp = Mn, defined in Fig. 3, the 
vertical component of cable force can be expressed:

	

.	  (6)

Value of EvFe can be found by putting Eq (5) into (6):

	

.  	  (7)

The corresponding vertical displacement of the cables 
anchorage point is:

     . 	  (8)

If the cable with real EvF is chosen, this correlation 
changes into Eq (9):

	
	  (9)

where Δ – the shortening (prestressing) value of the cable 
with stiffness EvF used to reduce the bending moments.

According to the principles of this calculation, the 
tensile force of cables under uniformly distributed load 
is related to the deflection of the stiffening girder in ca-
bles anchorage point. This deflection is determined by the 
assumption of equilibrium of moments Mp and Mn. The 

Eqs  (5) and (8) show that the tensile force of cables and 
deflection of the stiffening girder are not determined using 
parameters of the cable. Therefore EvF of the cable can be 
chosen using the Eq (6) which provides the required ten-
sioning force.

2.5. Influence of the cables inclination
Deformation of the stiffening girder not only elongates the 
inclined cable, but also turns it (Fig. 4). This turn affects 
the movement of the anchorage point of cable. This assign-
ment can be solved using the above equations for the verti-
cal cable found.

The slope of cable can be taken into account by fin-
ding an appropriate EvFs of the cable. This is a value which 
gives the same deflections of the stiffening girder as the 
previously found ones. The elongation Δl and the tensile 
force Ns of inclined cable can be found:

	
	  (10)

	
	  (11)

where h – the height of the pylon, m.
From geometrical shape of system the following equ-

ations can be expressed:

	 	  (12)

	
	  (13)

	

.  	 (14)

Here the length of cable is: .
The tensile force in inclined cable can be found as fol-

lows:

	
  	  (15)

2.6. Solution for multiple symmetrical cable pairs
Previously, the tensile force was found in one symmetrical 
cable pair caused by the uniformly distributed load. Like-
wise, this force can be found from the deformations of the 
stiffening girder:

	

.	  (16)
Fig. 4. Deformed shape of system with a symmetrical pair of the 
inclined cables
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In this system of equations for quantifiable which 
describes area before point of cable anchor function y2(x) 
is to be used, but for further quantifiable function y1(x). 
For calculation point both functions can be used.

2.7. Optimal span of the outer section
The span of outer section will be chosen in a way that the 
max positive and negative bending moments within this 
section take the same absolute value.

Using the parabolic equation for the layout shown 
in Fig. 5, the optimal span of the outer section can 
be determined as follows: . The max 
bending moment will be reached at the distance: 

.

3. The application example

3.1. Definition of the cable system
Previously found analytical expressions can be used for se-
lecting parameters in the cable-stayed bridge and to study 
their interaction. Final calculations should be carried by 
the FEM program that verifies compliance of the obtained 
data with the chosen criteria (Bruer et al. 1999; Gribni-
ak et al. 2010). Randomly some points of diagrams given 

below have been verified by the FEM program and a very 
good correlation has been found thereto.

This example should serve to estimate the equations 
and methodology established, as well as to verify its accu-
racy. Therefore, some factors were not considered (e.g., de-
formations of pylons from the moving loads and the cable 
sag effect) which are the issues for further examination of 
this method.

The analyzed system of a cable-stayed bridge is pre-
sented in Fig. 6. Initially, the pylons are adopted by the 

The forces in n pairs of the symmetrical cables can be found by solving a system of Eq (17).

		

	              

 (17)

Fig. 5. The bending moment diagram in the outer section

Fig. 6. Deformed shape of a cable-stayed bridge
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height h = 50 m. Span with the length L = 231 m is divided 
into 7 sections.

The assumption of the cross-sectional geometry and 
loads of the bridges are not described, as they are not a 
subject matter of this paper. Initially, the following para-
meters of the stiffening girder are adopted: 

−− second moment of area of the stiffening girder: I = 
41.7476 m4;

−− the Young’s modulus of the stiffening girder: Es = 
36 GPa;

−− the uniformly distributed load q = 1300 kN/m.
The stiffening girder is divided into sections accor-

ding to the assumptions listed above:

	  
m,

	  m.

3.2. Definition of the desired bending moment diagram
Symmetrical vertical forces added to the anchorage points 
of cables will provide a bending moment diagram which 
is similar to the one shown in Fig. 2, while three pairs of 
forces are used now.

The values of bending moment diagram caused by 
the uniformly distributed load on simple beam can by 
calculated at the beginning and at the end of middle 
section (section with span b2). Following the tensioning 
of cables at the beginning of the section there will be the 
max negative value, but in the middle of the section – 
the max positive value. These values are equal, but with 
opposite signs. Knowing these values at the early stages 
of the calculation, allows finding the suitable parameters 
of the stiffening girder.

 MNm.

Bending moments values for this example are given 
in Table 1. Fig. 7 shows the same on diagrams. Due to the 
symmetry, only the half of the bridge is presented.

Table 1. Bending moments in the characteristic points

x, 
m

Mload, 
MNm

Mprestress, 
MNm

Msum, 
MNm

0.0 0.00 0.00 0.00

12.2 1731.97 –1635.59 96.38

29.4 3852.27 –3948.65 –96.38

46.6 5587.08 –5490.70 96.38

63.8 6936.36 –7032.74 –96.38

81.1 7900.14 –7803.76 96.38

98.3 8478.40 –8574.78 –96.38

115.5 8671.16 –8574.78 96.38

Solving the equations system similar to (17) allows to 
obtain the vertical component of tensile force of cables N0, 
displacements of the stiffening girder f, the corresponding 
tensile strength in star-type cable system Ns (adopted to 
the pylon height 50 m) and the necessary stiffness of the 
inclined cable EvFs. The results are included in the Table 2.

Table 2. Obtained parameters of cables

Cable  
No.

N0,  
MN

f,  
mm

Ns,  
MN

EVFs,  
MN

1 44.77 56.67 51.92 61 638

2 44.77 102.62 72.52 92 877

3 44.77 125.59 98.54 19 0618

3.3. Some tasks for optimization
Tasks for optimization listed below are given in Figs 8 to 
15. All of them are found using the analytical approach 
described in this paper.

Fig. 7. Obtaining the desired bending moment diagram
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Fig. 8. Consumption of the inclined cables V (tons) depending 
on the slope of cables (a star-type cable-stayed bridge is 
observed and height of the pylons h (m) is used as a variable)

Fig. 9. Vertical displacement f (mm) of cables anchorage points 
depending on the stiffness EsI (GNm2) of the stiffening girder 
(constant values of the stiffness of cables EvFs are used as 
presented in Table 2)

Fig. 10. Required values of stiffness of the inclined cables EvFs 
(GN), depending on the displacements f (mm) of anchorage 
points (constant value of EsI of the stiffening girders is used)

Fig. 11. Vertical component N0 (MN) of the tensioning force 
of cables depending on stiffness EvFs (GN) of cables (constant 
value of EsI of the stiffening girders is used)

Fig. 12. Vertical component N0 (MN) of the tensioning force 
of cables depending on the stiffness EsI (GN) of the stiffening 
girders (constant values of the stiffness of cables EvFs are used)

Fig. 13. Max positives and negative bending moments Mpositive 
(MNm) and Mnegative (MNm) depending on the stiffness EsI 
(GNm2) of the stiffening girder (constant values of the stiffness 
of cables EvFs are used)
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Fig. 14. Max positive and negative bending moments Mpositive 
(MNm) and Mnegative (MNm) depending on the stiffness EvFs 
(GN) of cables (constant value EsI of the stiffening girder is 
used)

Fig. 15. The required values of stiffness of cables EvFs (GN) 
depending on EsI (GNm2) of the stiffening girder

4. Perspective development of the method

This paper shows a simplified example of the cable-stayed 
system of bridges. The proposed approach allows analyz-
ing also more complex systems:

−− cable-stayed bridges with back spans;
−− asymmetrical systems (e.g. with one pylon);
−− deformations of pylons can be taken into account;
−− approach can be used for analyzing the influence of 
variable loads (tandems defined in codes);

−− structural reliability index β can be analyzed de-
pending on the systems.

It is feasible to conduct a research of the ratio of stres-
ses caused by variable loads. This analysis shows that by 
using more massive (less extensible) cables it is possible to 
reduce fluctuations of stresses in the stiffening girder (Di 
Bernardo 1998). In this way it is possible to improve the 
fatigue conditions.

These are few topics for further researches of the 
authors of this paper.

5. Conclusions

Behavior of a cable system under uniformly distributed 
load can be analyzed by studying deformations of their 
components. These correlations can be mathematically de-
rived using the differential equations of deformed shape of 
girder and the tensioning forces of cables caused by their 
extensions.

The analysis of graphical correlations shows that by 
reducing the second moment of area of the stiffening gir-
der, additionally the cross-sectional area of cables can be 
reduced without changing the bending moment diagram 
caused by uniformly distributed load. In this case the va-
lues of stiffness of components must be chosen depending 
on the allowable deformations of the stiffening girder (ser-
viceability limit state).
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