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Abstract. This paper presents a discrete calculation method for an elastic cable loaded by static concentrated forces. 
The discrete method is suitable to use for all suspension structures (bridges, roofs). In the calculation of the elastic ca-
ble the main problem is the geometrically non-linear behaviour of the parabolic cable. The linear methods of analysis 
are suitable only for small spans. A geometrically non-linear continual model is especially useful for classical loading 
types, e.g. uniformly distributed loads. The discrete model of suspension structures allows applying all kinds of loads, 
such as distributed or concentrated ones. The assumptions of the discrete method described here are: the stress-strain 
dependence of the material is linear, the area of the cross-section of the cable is unchangeable during the elongation 
and the flexural rigidity of the cable is not taken into account. An experimental investigation was conducted to prove 
this calculation method.
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1. Introduction

A method is presented here to calculate an elastic cable 
using the numerical discrete analysis and the basis of the 
analytical discrete analysis is presented also. The geomet-
rical non-linearity is taken into account. The supporting 
nodes of the cable can locate on different levels and the 
cable is loaded by static concentrated forces. The following 
assumptions were made: the stress-strain dependence of 
the material is linear, the cross-sectional area of the cable 
remains unchanged and the flexural rigidity of the cable 
is not taken into account. Focus in other studies may be 
on the utilization of cables with flexural rigidity and de-
veloping the corresponding calculation methods (Fürst 
et al. 2001; Grigorjeva et al. 2004, 2010a, 2010b; Juozapai-
tis et al. 2010).

Despite the fact that the calculations in the discre-
te method require more computational power than in the 
continual model, it makes it possible to apply all kinds of 
loads, such as distributed or concentrated ones. A geome-
trically non-linear continual model is especially useful for 
simpler loading types (e.g. a uniformly distributed load). 
Both of the methods give quite similar results (Aare, Kul-
bach 1984; Idnurm 2004; Kulbach 1999, 2007; Kulbach et 
al. 2002; Leonard 1988). The biggest problem of the dis-
crete analysis is the huge amount of cubic and quartic equ-
ations that should be calculated. Extensive simplifications 
have been made in previous studies to solve this problem. 

This paper presents a new algorithm to increase the accu-
racy of the calculation results.

Under the action of concentrated forces the cable ta-
kes the form of a string polygon. Discrete analysis is based 
on the equilibrium of the balanced condition composed 
for every nodal point of the cable. Elongation of the cable 
is determined using the equation of deformation compa-
tibility for every straight section of the cable. These con-
ditions generate a nonlinear equation system, the solution 
of which gives all node displacements and internal forces 
in the cable. The final solution (displacements and internal 
forces) is found by describing the initial and the final ba-
lance of the cable (before and after the loading). 

2. Initial balance of the cable

The initial balance (state) of the cable is the situation before 
deflection. The initial balance is marked with subscript “0”. 
The cable is loaded with concentrated forces, i.e. the cable 
takes the configuration of a string polygon and the cable seg-
ments between the nodal points are as straight lines.

Let us define a cable whose neighbouring nodes are 
denoted by indices i – 1, i and i + 1 (Fig. 1). Let us observe 
the nodal point i of the cable. The nodal point is in equili-
brium under the action of the internal forces of two conse-
cutive cable segments and the external concentrated load. 
Then the condition of equilibrium for the initial state may 
be presented as (Kulbach, Õiger 1986)
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(1)

where F0, i – initial nodal load; H0 – initial horizontal com-
ponent of the cable’s internal force;    – initi-
al ordinates of the cable nodes;   – initial horizon-
tal distance between the nodes.

For a cable that has supporting nodes on different le-
vels, H0 is calculated as (Gimsing 1997)

  
(2)

where  and  – initial ordinates of the cable’s start- 
and endpoint;  – initial ordinate of node 1; L0  – span 
of the cable;  – initial horizontal distance between node 
i and the starting point of the cable;  – initial horizon-
tal distance between node 1 and the starting point of the 
cable.

3. Final balance of the cable

3.1. Exact analysis
After loading the cable with additional loads  the 
nodes have horizontal displacements  and vertical dis-
placements  (Fig. 2). The condition of equilibrium in the 
final balance of the nodal point i is

  
(3)

where  – final nodal load ( ); H – final hori-
zontal component of the cable’s internal force;   

  – horizontal displacements of the nodes;   
 – vertical displacements of the nodes.
There are three unknown parameters in Eq (3): u, w 

and H that need extra equations to calculate them. It is 
done using the relative deformation of the cable. The re-
lative deformation of the cable’s segment has been found 
by using Hooke’s law and the displacements of the cable’s 
nodal points. Equalizing them, the equation of deforma-
tion compatibility obtains in the form:

     

(4)

where  – cable’s modulus of elasticity;  – cable’s cross-
sectional area.

3.2. Simplified analysis
An exact analysis in the final balance is complicated be-
cause there is a need to calculate numerous cubic and 
quartic equations to find  and there is no usable 
analytical solution. Eqs (3) and (4) is simplified using the 
numerical analysis.

Fig. 1. Initial discrete scheme of the cable;  where n – 
number of loads (Idnurm 2004)

Fig. 2. Final discrete scheme of the cable (Idnurm 2004)
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Provided that  Eq (3) takes the form 
of (Kulbach, Õiger 1986)

  
(5)

Before Eq (4) is simplified, it is expressed as follows: 

 
  (6)
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To calculate Eq (6) it occurs that if  
the following simplifications are suitable for use (a 

satisfying result is attained if   Fig.  3):

a)

 

b)

 

This simplification leads us to the following formula:

   (7)

where  

 

 

 

Taking into account that (Kulbach, Õiger 1986)

     (8)

where   – horizontal displacements of the support 
nodes of the cable, Eq (7) may be written in the form of

     (9)

The final internal force of the cable and the displa-
cements of the nodes may be calculated using a one- or 
a two-level iterative process (respectively steps 1…5 and 
6…8 below). The solution algorithm is presented bellow.

1. Use  in Eqs (1) and (2) to calculate estimated H.
2. Use Eq (5) to calculate 
3. Use Eq (9) to calculate 
4. Compare the calculated  to the exact value 

(for example – if the supports are fixed, then ). If 
the difference between them is not small enough, modify 
the value of H and repeat the calculation from step 2. 

5. Use Eq (7) to calculate  The first level of the itera-
tive process is completed.

6. Here starts the second level of the iterative pro-
cess. Take H and ui from the first iterative process and use 
Eq (3) to calculate wi ..7. Use Eqs (7) and (9) to calculate corrected H and ui .

8. Repeat steps 6 and 7 until H, ui and wi are conver-
ged to the required precision.Fig. 3. Ratio of simplified results to exact results
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If the deflections of the cable are relatively small (the 
experiments and the calculations showed that the vertical
deflection should be less than ), then it is accurate 

enough to use the one-level iterative process (further: the 
first simplification). It is not recommended to calculate 
the horizontal displacements of the cable’s nodal points 
(except the cable’s supports) using the first simplification.

The full two-level iterative process (further: the 
second simplification) requires a high computational 

efficiency, but if  this method is exact in 
practice.

4. Numerical results

To characterize the behaviour of the cable under the con-
centrated loads, the numerical results were calculated. 
For that purpose a cable with a span of 50 m was chosen. 
Supports of the cable are on different levels (the vertical 
distance between them is 15 m). In the initial balance all 
4 nodes of the cable were loaded by a concentrated load 
of 50 kN and in the final balance 100 kN was added. The 
cross-sectional area of the cable was  and 
the modulus of elasticity  The de-
sign scheme of the structure in the initial balance is pre-
sented in Fig. 4.

Results of the calculation (vertical and horizontal dis-
placements of the nodal points and internal force of the 
cable) using the first and the second simplification of the 
discrete analysis are presented in Table 1 (Fig. 5). The ge-
ometrically non-linear behaviour of the cable under con-
centrated nodal loads between 50…150 kN is illustrated 
in Fig. 6.

5. Experimental investigation

The numerical calculation method presented in this pa-
per was checked experimentally. The cable structure is 
the same as presented in Fig. 4. The scale of the model is 

 Parameters of the model are presented in

Table 2 and some pictures of the model in Figs 7–10. The 
vertical displacements of the nodal points and the internal 
force of the cable were measured.

Fig. 4. Design scheme of the cable structure in the initial 
balance

Fig. 5. Displacements of the cable’s nodal points in the 
final balance using the second simplification (the vertical 
displacements are increased 5 and the horizontal displacements 
10 times in the figure)

Fig. 6. Linear and non-linear relations between the nodal load 
Fi and the max vertical deflection of the cable wmax (based on 
the first simplification)

Table 1. Numerical results of the example

Parameter Unit First  
simpl. S1

Second 
simpl. S2

H, N 1 297 733 1 284 067 1.1
w1 mm 311.7 322.8 –3.4
w2 mm 467.6 470.6 –0.6
w3 mm 467.6 452.8 3.3
w4 mm 311.7 288.1 8.2
u1 mm 55.2 55.4 –0.4
u2 mm 115.2 113.5 1.5
u3 mm 147.8 140.2 5.4
u4 mm 120.4 108.5 11.0

Table 2. Parameters of the structure and the model

Parameter Cable Coeff. Model

Over. 
dim.

Span 50 m a 2000 mm

Height 15 m a 600 mm

Cable
Sect. area 2228 mm2 a2 3.565 mm2

Mod. of 
elasticity 1.25 ×105 MPa 1 1.25 ×105 MPa 

Loads
Init. bal. 50 kN a2 80 N

Final bal. 150 kN a2 160 N



102 M. Kiisa et al. Discrete Analysis of Elastic Cables

Fig. 7. Nodal point of the cable where the vertical displacements 
were measured

Fig. 8. Support of the cable

Fig. 9. Maksimov’s gauge with the accuracy of 0.1 mm to 
measure the vertical displacements of the nodal points

Fig. 10. Strain gauges to measure the elongation of the cables

Fig. 11. Comparison of max vertical displacements of nodal 
points between experimental results and numerical calculations 
(model scale 1:25)

Comparison between the test results proved the re-
liability of the model. Results among each testing varied 
at a max of ±1% from the average. The average difference 
between single tests and mean results was 0.0%. That was 
the main reason why only five tests were done.

Comparison between the average experimental verti-
cal displacement of each nodal point and the calculations 
was in the range of +0.4…–5.1% using the first simplifi-
cation and +2.7…–3.1% using the second simplification 
(Fig. 11). The experimental horizontal component of the 
cable’s internal force was 6.7% and 5.7% smaller than the 
calculations based on two simplified algorithms showed. 
Measured displacements of nodal points were on average 
1.9% and 0.2% smaller (accordingly, compared to the first 
and the second simplification) than the calculations pre-
dicted, which proves that the numerical calculation met-
hod worked out in this paper is usable. 
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6. Conclusion

This article provides an algorithm to calculate internal 
forces and deflections of an elastic cable using the discrete 
analysis. Three solutions are presented – an exact analysis 
(analytical) and two simplified methods (numerical). An 
experimental investigation was also carried out to verify 
the simplified calculation methods.

Using the exact analysis in the final balance is com-
plicated because it leads to non-linear equations that have 
no usable analytical solutions. The idea of a simplification 
is that some parameters that have inconsiderable influence 
on the final result are eliminated from the equations. As a 
result, all cubic and quartic equations are transformed to 
quadratic equations.

The consequences of the numerical calculation met-
hods.

1. If the vertical deflection of the cable is relatively 
small (the experiments and the calculations showed that

it should be less than ), it is accurate enough to use 

the first simplification (one-level iterative process) to cal-
culate the vertical deflections and the internal forces of the 
cable. It is not recommended to calculate the horizontal 
displacements of the cable’s nodal points (except the cable’s 
supports) using this method.

2. The full two-level iterative process uses simplifi-
cations only in the equations of the relative deformation of

the cable’s segments. If  
 
this method is

exact in practice. The disadvantage of this method is that it 
requires high computational efficiency.

The consequences of load-testing.
1. The test results verified the reliability of the test 

model. The results of each test varied at a max of ±1% from 
the average. The average difference between single test re-
sults and mean results was 0.0%.

2. Measured vertical displacements of the nodal 
points were on average 1.9% and 0.2% smaller (accordin-
gly, compared to the first and the second simplification) 
than the calculations predicted. The experimental hori-
zontal component of the cable’s internal force was 6.7% 
and 5.7% smaller than the calculations based on two sim-
plified algorithms showed. This proves that the numerical 
calculation method worked out in this paper is usable.

The geometrically nonlinear numerical discrete ana-
lysis presented in this paper enables adequate determina-
tion of deflections and internal forces of the elastic cable. 
The numerical example demonstrated a very good agree-
ment between the results of both the simplified discrete 
methods and the experimental investigation. The biggest 

advantage of the discrete analysis is that it is easy to des-
cribe different load types and load combinations. The most 
important disadvantage is the necessity to calculate com-
plicated systems of equations and very often these systems 
converge slowly. Because the accuracy of the calculations 
is high and the development of the digital computers is 
fast, the discrete analysis has a significant role in the calcu-
lations of the long-span cable-supported structures.
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